Self-assembly of onions induced by charge and rheological

properties in anionic/nonionic surfactant solutions

Renhao Dong, Zhenhuan Zhong, and Jingcheng Hao* Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100 (China), E-mail: jhao@sdu.edu.cn

Supporting Information

Fig. S1 Plots of the mixed cmc versus the surfactant composition R_{AOT} . Symbols represent the measured values, the dashed line represents the ideal results with $\beta = 0$, and the solid line refers to the calculated case with $\beta^m = -1.88$.

Fig. S2 The two dimensional SAXS scattering patterns of the lamellar structure with $R_{AOT} = 0.4$ at three different surfactant concentrations at 25.0 ± 0.1°C: (a) 15, (b) 18, and (c) 25 wt%.

Fig. S3 The two dimensional SAXS scattering patterns of the lamellar structure with $R_{AOT} = 0.8$ at three different surfactant concentrations at 25.0 ± 0.1°C: (a) 15, (b) 18, and (c) 25 wt%.

Fig. S4 Small angle x-ray scattering curves of the lamellar structures with R_{AOT} = 0.8 at three different surfactant concentrations: (a) 15%, (b) 18%, and (c) 25%. (d) Plot of the interlamellar distance versus the whole concentration. Insets are the polarized images of the lamellar phase samples.

Fig. S5 Cryo-TEM images of lamellar phase solution with $R_{AOT}=0.4$ at $W_T\!\!=\!\!15\%.$

Fig. S6 FF-TEM images of lamellar phase solutions, W_T =15%, R_{AOT} = 0.8. Arrows show the multilamellar structures.

Fig. S7 Time evolution of shear viscosity for different shear rates in the different lamellar solutions at 25.0 ± 0.1 °C. W_T=15%, R_{AOT} = 0.8.

Fig. S8 DSC curves of lamellar phase samples at $R_{AOT} = 0.0$ (a) and 0.2 (b) where the total surfactant concentration is 25%.

Fig. S9 Phase transition of AOT/C₁₂EO₄ aqueous solution with $R_{AOT} = 0.5$ induced by adding amount of NaCl at 25.0 ± 0.1°C. (a) Without salt, (b) 0.1% NaCl, and (c) 0.5% NaCl. From left to right, the surfactant concentration increases in the sequence of 1%, 3%, 8%, 10%, 15%, 18%, 20%, and 30%.

Fig. S10 Oscillatory rheogram for 15% L_1/L_{α} -phase solution with $R_{AOT} = 0.5$ after addition of 0.5% NaCl.

Annex. 1 Modeling of Mixed micellization

According to Rubingh's regular solution theory for mixed micelles,¹ the mixed cmc of AOT and $C_{12}EO_4$ system can be derived by Eq. (S1),

$$\frac{1}{cmc_{mix}} = \frac{\alpha}{f_1 cmc_1} + \frac{1-\alpha}{f_2 cmc_2}$$
(S1)

where α is the total molar fraction of AOT in the whole system; cmc₁ and cmc₂ are the cmc's of AOT and C₁₂EO₄ surfactants, respectively; f₁ and f₂ are the activity coefficients of AOT and C₁₂EO₄ in the mixed micelle.

In the case of ideal mixing, there is no net interaction, $f_1=f_2=1$ and the theoretical cmc can be calculated by Eq. (S2),²

$$\frac{1}{cmc_{mix}} = \frac{\alpha}{cmc_{AOT}} + \frac{1-\alpha}{cmc_{C1 EO}}$$
(S2)

The activity coefficients f_1 and f_2 are given by Eq. (S3),

$$f_1 = \mathbf{e} \ge \mathbf{p} \mathbf{f} + \mathbf{k}_{A \ O \ T}^2$$

$$f_2 = \mathbf{e} \ge \mathbf{p} \mathbf{f} \mathbf{x}_{A \ O \ T}^2$$
(S3)

where x_{AOT} is the mole fraction of AOT in the mixed micelle. The magnitude of the interaction between the two surfactants can be expressed by single parameter β . When there is no net interaction, $\beta=0$. A negative β interaction parameter usually implies an attractive interaction and indicates a synergism in the mixing behavior. The interaction parameter β can be calculated by the following equations,

$$\frac{x_{A \ O \ T}^{2} \ln \left(\frac{cmc_{m \ i} \mathcal{Q}}{cmc_{1} x_{A \ O \ T}}\right)}{(1-x_{A \ O \ T}^{2}) \ln \left(\frac{cmc_{m \ i} (1-\alpha)}{cmc_{2} (1-x_{A \ O \ T})}\right)} = 1$$
(S4)

$$\beta = \frac{\ln \left(\frac{cmc_{m\,i} \alpha}{cmc_{A\,O} \chi}\right)}{\left(1 - x_{A\,O\,T}\right)}$$
(S5)

References

- D. N. Rubingh in "Solution Chemistry of surfactants" K. L. Mittal Ed. Vol 1, New York, 1979.
- 2. J. H. Clint, J. Chem. Soc., Faraday Trans., 1975, 73, 1327.