Electronic Supplementary Information

Supramolecular Comb Polymer Structure and Unique Mesomorphic Behavior Induced by Stacking Interactions Between Poly(2-Vinyl Pyridine) and Palladium Pincer Surfactants in the Solid State

Inbal Davidi,[†] Artyom Semionov,[‡] David Eisenberg,[†] Gil Goobes,[‡] and Roy Shenhar^{†,}*

[†] The Institute of Chemistry, the Center for Nanoscience and Nanotechnology, and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; [‡]Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel.

E-mail: roys@chem.ch.huji.ac.il

Synthetic details

The Pd-SCS surfactant was synthesized according to modified literature procedures.^{1,2,3} Figure S1 shows the entire synthetic scheme.

Figure S1. Pd-SCS synthesis.

Dimethyl 5-hydroxyisophthalate (1). To 2-hydroxyisophthalic acid dissolved in DMF, Na₂CO₃ (1 eq) was added slowly. After few minutes of mixing, methyl iodide (2 eq) was added. The mixture was stirred for 24 h at 40-50 °C, after which the solution was allowed to cool down to room temperature. The product was diluted in water, extracted with ethyl acetate, dried over Na₂SO₄ and filtered. Evaporation of the solution provided **1** as a white solid (77% yield). ¹H-NMR (400 MHz, $\delta_{\rm H}$ ppm, CDCl₃) 8.26 (1 H, s, Ph), 7.76 (2 H, s, Ph), 3.95 (6 H, s, CH₃).

Dimethyl 5-(octadecyloxy)isophthalate (2). Compound **1**, K₂CO₃ (2.5 eq) and 11-bromooctadecane (1 eq) were dissolved in CH₃CN. The mixture was heated to reflux for 24 h, after which the solvent was evaporated and the product was re-dissolved in CH₂Cl₂ and washed with water. The organic layer was washed with 1M HCl solution, dried over Na₂SO₄, filtered and evaporated, resulting in white solid (98% yield). ¹H-NMR (400 MHz, $\delta_{\rm H}$ ppm, CDCl₃) 8.26 (1 H, s, Ph), 7.74 (2 H, s, Ph), 4.03 (2 H, t, *J*=6.8, OCH₂), 3.94 (6 H, s, CO₂CH₃), 1.80 (2 H, m, OCH₂CH₂), 1.47 (2 H, m, CH₂), 1.25-1.40 (28 H, br s, CH₂), 0.88 (3 H, t, *J*=6.8, CH₂CH₃).

(5-(Octadecyloxy)-1,3-phenylene)dimethanol (3). LiAlH₄ (2 eq) was suspended in dry THF to create 1M solution to which 2 (1 eq), dissolved in dry THF, was added dropwise under nitrogen atmosphere. The reaction was heated to 40 °C for 24 h, cooled to room temperature, HCl solution (1 M) was added and the solvent was evaporated. The product was extracted in a soxhlet with a 1:1 v/v mixture of CH₂Cl₂:THF. Recrystallization from EtOH resulted in white solid (83% yield). ¹H-NMR (400 MHz, $\delta_{\rm H}$ ppm, CDCl₃) 6.93 (1 H, s, Ph), 6.84 (2 H, s, Ph), 4.66 (4 H, s, CH₂OH), 3.98 (2 H, t, *J*=6.4, OCH₂), 1.76 (2 H, m, OCH₂CH₂), 1.47 (2 H, m, CH₂), 1.28-1.40 (28 H, br s, CH₂), 0.88 (3 H, t, *J*=6.8, CH₃).

1,3-Bis(chloromethyl)-5-(octadecyloxy)benzene (4). Compound **3** was dissolved in dry CHCl₃ under nitrogen atmosphere, after which triethyl amine (3 eq) and mesyl chloride (MsCl, 3 eq) were added. The reaction was refluxed overnight. After cooling, the solvent was evaporated and the product was purified by column chromatography (SiO₂, with 1:2 ethyl acetate:hexane as eluent). Recrystallization from EtOH resulted in white solid (80% yield). ¹H-NMR (400 MHz, $\delta_{\rm H}$ ppm, CDCl₃) 6.97 (1 H, s, Ph), 6.88 (2 H, s, Ph), 4.54 (4 H, s, CH₂Cl), 3.97 (2 H, t, *J*=6.4, OCH₂), 1.76 (2 H, m, OCH₂CH₂), 1.45 (2 H, m, CH₂), 1.28-1.40 (28 H, br s, CH₂), 0.88 (3 H, t, *J*=6.8, CH₃).

(5-(Octadecyloxy)-1,3-phenylene)bis(methylene)bis(phenylsulfane) (5). Thiophenol (4 eq) was added to a stirred suspension of NaH (8 eq) in dry THF. The mixture was stirred for 1-1.5 hr to allow the formation of sodium thiophenolate. A solution of compound 4 in dry THF was added dropwise and the mixture was heated to 50 °C under nitrogen atmosphere overnight. The solvent was evaporated and the reaction mixture was re-dissolved in CH₂Cl₂. Excess NaH was neutralized with HCl solution (1 M). The organic layer was extracted with saturated solution of NaHCO₃ and brine, dried over Na₂SO₄, filtered and the solvent was evaporated. The product was purified by column chromatograph (SiO₂, 1:10 ethyl acetate:hexane as eluent) and then recrystallized from hexane or EtOH to give a white solid (75% yield). ¹H-NMR (400 MHz, $\delta_{\rm H}$ ppm, CDCl₃) 7.22-7.25 (10 H, m, PhS), 6.81 (1 H, s, Ph), 6.70 (2 H, s, Ph), 4.03 (4 H, s, CH₂S), 3.84 (2 H, t, *J*=6.4, OCH₂), 1.71 (2 H, m, OCH₂CH₂), 1.41 (2 H, m, CH₂), 1.25-1.30 (28 H, br s, CH₃), 0.88 (3 H, t, *J*=6.8, CH₃).

(4-(Octadecyloxy)-2,6-bis(phenylthiomethyl)phenyl)palladium(II) chloride (6). The synthesis was performed according to the literature. ^{Error! Bookmark not defined.} The yellow product was purified by column chromatography (SiO₂, 200:3 CH₂Cl₂:MeOH as eluent) (72% yield). ¹H-NMR (400 MHz, $\delta_{\rm H}$ ppm, CDCl₃) 7.81 (4 H, m, PhS), 7.36 (6 H, m, PhS), 6.60 (2 H, s, Ph), 4.55 (4 H, br s, CH₂S), 3.86 (2 H, t, *J*=6.4, OCH₂), 1.73 (2 H, m, OCH₂CH₂), 1.41 (2 H, m, CH₂), 1.25-1.30 (28 H, br s, CH₂), 0.88 (3 H, t, *J*=7.2, CH₃).

Figure S2. Low field portion of ¹H-NMR in CDCl₃ of pure Pd-SCS (blue) and P2VP(Pd-SCS)_{0.9}/AgBF₄ (black). Spectra are offset for clarity.

Electronic Supplementary Material (ESI) for Soft Matter This journal is C The Royal Society of Chemistry 2012

Table S1. ss- ¹³	³ C-NMR	assignmen	nt of Pd-SCS	and P2VP	based on	DFT	calculations.
-----------------------------	--------------------	-----------	--------------	----------	----------	-----	---------------

	Pd-SCS			
assignment	δ _{exp} (ppm)	δ _{calc} (ppm)		
C19	157	156.2		
C20 C24	111	110.6	$10 < 1^{a}$	
C20,C24		101.6	106.1	
C21 C23	152	147.9	1460^{a}	
021,025	153	145.9	140.9"	
C22	107	179.7		
C25	54	63.7	59.3 ^a	
C23	54	55.0		
C26		139.1		
C20		138.6	129.6 ^a	
	- 130	126.8		
C_{20} C_{20}		128.4		
C28,C30		126.6		
		127.5		
		119.8		
C27 C21		131.5		
C27,C51		128.5		
		136.2		
C20		124.8		
C29		127.3		
C18	68	56.6		
C4-C17	30-40			
C16				
C3	25			
C2	23			
C1	15			

Average	calcu	lated	val	lues.	
---------	-------	-------	-----	-------	--

a

P2VP				
assignment	δ _{exp} (ppm)	δ _{calc} (ppm)		
C3	165	168.6		
C7	150	149.2		
C5	135	133.6		
C4	122	118.4		
C6	122	119.7		
C2	40-45	51.3		

References

(1) Guo, W.; Li, J. F.; Fan, N. J.; Wu, W. W.; Zhou, P. W.; Xia, C. Z., Synth. Commun. 2005, 35, 145-152.

- (2) Pollino, J. M.; Stubbs, L. P.; Weck, M., Macromolecules 2003, 36, 2230-2234.
- (3) Huck, W. T. S.; van Veggel, F. C. J. M.; Reinhoudt, D. N., J. Mater. Chem. 1997, 7, 1213-1219.