Supporting Information

A Crystal Engineering Rationale in Designing A Cd^{II} Coordination Polymer Based Metallogel Derived from a C3 Symmetric Tris-amide-tris-carboxylate Ligand

Subhabrata Banerjee, N. N. Adarsh and Parthasarathi Dastidar* Department of Organic Chemistry, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata – 700032, West Bengal, India ocpd@iacs.res.in; parthod123@rediffmail.com

Contents

Page No

1.	Molecular Plot and Hydrogen Bonding parameters of CP1	S1
2.	Scheme S1.	S2
3.	Figure S1.	S3
4.	Powder X-ray diffraction (XRPD) comparison plot for CPs and Xerogels.	S4

Molecular plot and Hydrogen Bonding Parameters for CP1 (Figure S1)

* 1+x, y, 2+z; ** -x, -1/2+y, 1/2-z ; # -1+x, y, -2+z ; \$ -x, 1/2+y, 1/2-z

Hydrogen bonding parameters of CP1							
D−H•••A	D–H (Å)	H●●●A (Å)	D•••A (Å)	D–H●●●A (⁰)	Symmetry operation for A		
N(10)-H(10)•••O(39)	0.86	2.13	2.929(6)	154.1	x, -y+3/2, z-1/2		
N(33)-H(33)•••O(28)	0.86	2.07	2.881(6)	157.1	-x+1, -y+2, -z+2		
O(44)•••O(43)			2.745(7)				
O(44)●●O(27)			2.744(7)				
O(43)•••O(1)			2.618				

anti

0

Ò

Ø

Scheme S1

TGA of CP1

Figure. S2

Unit cell contents = $4 \text{ Ligand}(L1) + 4 \text{ Cd}^{2+} + 4 \text{ H}_2\text{O} (\text{occluded}) + 4 \text{ H}_2\text{O} (\text{coordinated}) + 48 \text{ disorderd H}_2\text{O} (488 \text{ electrons from SQUEEZE results approximately attributed to 12} \text{ H}_2\text{O} \text{ molecule})$

Monoclinic, $P2_1/c$ space group, Z = 4

Therefore FW = Unitcell contents/4

= 1Ligand(L1) + 1 Cd^{2+} + 1 H₂O (coordinated)+1(occluded) + 12 H₂O (occluded) = 1 X 564.11 + 113.9 + 18.01+18.01 + 12X 18.01=929.11

Weight loss for $13H_2O = 14 \times 18.01/929.11$

S2

= 252/912.11 = 27.12 % (experimental 27.36 %)

PXRD comparison between bulk and xerogel state of G2,G3, G4

Figure S3 : PXRD comparison between bulk (CP2) and xerogel of G2

Figure S4 : PXRD comparison between bulk (CP3) and xerogel of G3

Figure ${\bf S5}$: PXRD comparison between bulk (CP4) and xerogel of G4

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: pdann

Bond precision:	C-C = 0.0096 A	V	Navelength=0	.71073			
Cell:	a=17.9224(13) alpha=90	b=26.390 beta=99	0(2) .700(2)	c=9.0841(7) gamma=90			
Temperature:	298 K						
	Calculated		Reported				
Volume	4235.1(6)		4235.1(6)				
Space group	P 21/c		P2(1)/c				
Hall group	-P 2ybc		?				
Moiety formula	C30 H18 Cd N3 O10,	0	?				
Sum formula	C30 H18 Cd N3 O11		C30 H46 Cd	N3 023			
Mr	708.88		929.10				
Dx,g cm-3	1.112		1.457				
Z	4		4				
Mu (mm-1)	0.562		0.601				
F000	1420.0		1916.0				
F000′	1417.52						
h,k,lmax	17,25,8		16,25,8				
Nref	3819		3803				
Tmin,Tmax	0.829,0.919		0.831,0.921				
Tmin'	0.825						
Correction method= MULTI-SCAN							
Data completene:	ss= 0.996	Theta(ma	ax)= 19.750				
R(reflections) =	0.0437(3109)	wR2(ref	lections)= ().1023(3803)			
S = 1.107	Npar= 4	06					

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

🗳 Alert level A

CHEMW03_ALERT 2 A ALERT: The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.90 <> 1.10 From the CIF: _cell_formula_units_Z 4

From t	the CIF:	chemical	formula	a weight	929.10
TEST:	Calculate	formula	weight	from _atom_site_	*
atom	mass	num	sum		
С	12.01	30.00	360.33		
н	1.01	18.00	18.14		
N	14.01	3.00	42.02		
0	16.00	11.00	175.99		
Cd	112.41	1.00	112.41		
Calcul	lated form	ıla weigh	708.89		

Author Response: We have used SQUEEZE to remove the contributions of disordered solvent molecules (which we could not be modeled) within the crystal lattice. Therefore, the contribution of disordered solvent molecules removed by the SQUEEZE process are included in the overall formula, formula weight, density, F(000) *etc.* The output of the *PLATON* (generated as. sqf file) is also appended to the bottom of the CIF.

THETM01_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550 Calculated sin(theta_max)/wavelength = 0.4755

> Author Response: The crystal was poorly diffracting at higher Bragg angles. The situation did not improve even after repeating crystallization and fresh data collection.

Author Response: We have used SQUEEZE to remove the contributions of disordered solvent molecules (which we could not be modeled) within the crystal lattice. Therefore, the contribution of disordered solvent molecules removed by the SQUEEZE process are included in the overall formula, formula weight, density, F(000) etc. The output of the PLATON (generated as \.sqf file) is also appended to the bottom of the CIF.

PLAT306_ALERT_2_A Isolated Oxygen Atom (H-atoms Missing ?) 044

Author Response: The hydrogen atoms of the lattice included water molecules could not be located from differnce Fourier map.

🎈 Alert level B

PLAT051_ALERT_1_B Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by . 6.45 Perc.

Author Response: We have used SQUEEZE to remove the contributions of disordered solvent molecules (which we could not be modeled) within the crystal lattice. Therefore, the contribution of disordered solvent molecules removed by the SQUEEZE process are included in the overall formula, formula weight, density, F(000) *etc.* The output of the *PLATON* (generated as. sqf file) is also appended to the bottom of the CIF.

 PLAT430_ALERT_2_B Short Inter D...A Contact 027 .. 044 .. 2.74 Ang.

 Author Response: The short contact is due to the hydrogen bonding between the lattice included water and carboxylate. Since the hydrogen atom associated with the lattice included water could not located in the difference fourier map, it shows as short contact alert.

 PLAT430_ALERT_2_B Short Inter D...A Contact 043 .. 044 .. 2.75 Ang.

 Author Response: The short contact is due to the hydrogen bonding between the lattice included water and carboxylate.

between the lattice included water and carboxylate. Since the hydrogen atom associated with the lattice included water could not located in the differnece fourier map, it shows as short contact alert.

Alert level C								
REFNR01 ALERT 3 C Ratio of reflections to parameters is < 10 for a								
centrosymmetric structure								
sine(theta)/lambda 0.4755								
Proportion of unique data used 1.0000								
Ratio reflections to parameters 9.3670								
PLAT041 ALERT 1 C Calc. and Reported SumFormula Strings Differ	?							
PLAT068 ALERT 1 C Reported F000 Differs from Calcd (or Missing)	?							
PLAT088 ALERT 3 C Poor Data / Parameter Ratio	9.37							
PLAT230 ALERT 2 C Hirshfeld Test Diff for 01 C3	5.3	su						
PLAT230 ALERT 2 C Hirshfeld Test Diff for C4 C5	5.5	su						
PLAT230 ALERT 2 C Hirshfeld Test Diff for C16 C17	5.2	su						
PLAT241 ALERT 2 C Check High Ueg as Compared to Neighbors for	02							
PLAT241 ALERT 2 C Check High Ueg as Compared to Neighbors for	C35							
PLAT242 ALERT 2 C Check Low Ueg as Compared to Neighbors for	Cd1							
PLAT250 ALERT 2 C Large U3/U1 Ratio for Average U(i,j) Tensor	2.2							
PLAT334 ALERT 2 C Small Average Benzene C-C Dist. C34 -C42	1.37	Ang						
PLAT342 ALERT 3 C Low Bond Precision on C-C Bonds	0.0096	Ang						
PLAT369 ALERT 2 C Long C(sp2)-C(sp2) Bond C11 - C13	1.53	Ang						
PLAT414 ALERT 2 C Short Intra D-HH-X H10 H14	1.96	Ang						
PLAT414 ALERT 2 C Short Intra D-HH-X H16 H21	1.93	Ang						
PLAT420_ALERT_2_C D-H Without Acceptor N21 - H21	?							

Alert level G

N

12.00

FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the CELLZO1 ALERT 1 G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C30 H46 Cd N3 O23 TEST: Compare cell contents of formula and atom_site data Z*formula cif sites diff atom С 120.00 120.00 0.00 Н 184.00 72.00 112.00 Cd 4.00 4.00 0.00

0.00

12.00

	C	D	92.00	44.00	48.00				
PLAT(004 ALER	RT 5 G	Info: Poly	meric Stru	cture Fo	ound with	Dimension .	2	
PLAT(005 ALER	RT 5 G	No iucr re	efine inst	ructions	details	in CIF	?	
PLAT(007 ALER	RT 5 G	Note: Numbe	er of Unre	fined D-	H Atoms .		3	
PLAT:	194 ALER	RT 1 G	Missing ce	ell measur	ement re	flns used	d datum	?	
PLAT:	195 ALER	RT 1 G	Missing ce	ell measur	ement th	neta max	datum	?	
PLAT:	196 ALER	RT 1 G	Missing ce	ell measur	ement th	neta min	datum	?	
PLAT(506 ALER	RT 4 G	VERY LARGE	Solvent A	ccessibl	e VOID(S)	in Structure	e !	
PLAT'	764 ALER	RT 4 G	Overcomplet	e CIF Bon	d List I	Detected	(Rep/Expd) .	1.13	Ratio
PLAT	304 ALER	RT 5 G	ARU-Pack Pi	coblem in	PLATON A	nalysis .		6	Times
PLAT	369 ALER	RT 4 G	ALERTS Rela	ated to th	e use of	SQUEEZE	Suppressed	1	
4	ALERT 1	level /	A = Most 11	cely a ser	ious pro	oblem - re	esolve or exp.	lain	
3	ALERT 1	level i	B = A potent	ially ser	ious pro	oblem, cor	isider careiu.	цу .,	
17	ALERT 1	level (C = Check. H	insure it	is not o	aused by	an omission (or oversigi	nt
13	ALERT 1	revel (s = General	informati	.on/check	t it is no	ot something w	unexpected	
			CTE constan				sistent on mi		
	ALERT C	Lype I	CIF COnstru	iccion/syn	icax erro	or, incons	v v v v v v v v v v v v v v v v v v v	ssing data	
17	ALERT t	cype 2	indicator t	nat the s	tructure	e model ma	ay be wrong o	r dericient	5
4	ALERT t	суре з	Indicator t	that the s	tructure	e quality	may be low		
3	ALERT t	cype 4	Improvement	:, methodo	ology, qu	ery or su	uggestion		
4	ALERT t	type 5	Informative	e message,	check				

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/04/2012; check.def file version of 14/04/2012

