Supporting Information

Effects of molecular chirality on superstructural chirality in liquid crystalline dark conglomerate phases

Hale Ocak*¹, Belkız Bilgin-Eran¹, Marko Prehm^{2,3} and Carsten Tschierske*³

¹Department of Chemistry, Yildiz Technical University, Davutpaşa Yerleşim Birimi, TR-34210 Esenler, Istanbul, Turkey ²Institute of Chemistry, Physical Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle, Germany

³Institute of Chemistry, Organic Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Germany

1. Additional data

1.1 Conditions for X-ray scattering

The X-ray diffraction patterns of aligned or partially aligned samples were recorded with a 2D detector (HI-STAR, Siemens). Ni filtered and pin hole collimated CuK_{α} radiation was used. The exposure time was normally 60 min. The sample to detector distance was 8.8 cm and 26.9 cm for the wide angle and small angle measurements, respectively. Alignment was achieved upon slow cooling (rate: $1 \text{ K} \cdot \min^{-1} - 0.1 \text{ K} \cdot \min^{-1}$) of a small droplet of the sample on a glass plate and takes place at the sample–glass or at the sample–air interface, with domains fiber-like disordered around an axis perpendicular to the interface. The aligned samples were held on a temperature-controlled heating stage.

1.2 XRD patterns

Fig. S1. (a) X-ray diffraction patterns of compound *rac-3b* in the B₁ mesophase (a = 3.7 nm; b = 4.8 nm) at T = 110 °C; the left picture shows wide angle pattern, the right picture shows the the small angle pattern; (b) θ -scan over the small angle pattern the inset shows the diffuse scattering in the wide angle region.

Fig. S2. X-ray diffraction patterns of compound *rac*-Si₃-3b in the Dark conglomerate phase at T = 100 °C; the left picture shows wide angle pattern, the right picture shows the the small

п

1

3

diff

angle pattern; (b) θ -scan over the wide angle pattern the inset shows the diffuse scattering in the wide angle region.

Fig. S3. X-ray diffraction patterns of compound *rac*-Si_{3i}-2b in the Dark conglomerate phase at T = 120 °C; the left picture shows wide angle pattern, the right picture shows the the small angle pattern; (b) θ -scan over the wide angle pattern the inset shows the diffuse scattering in the wide angle region.

θ / ⁰	d. /nm	10
U _{obs} /	$u_{\rm obs}/mm$	п
1.03	4.27	1
3.09	1.43	3
6.42	0.69	diff
9.53	0.47	diff

Fig. S4. X-ray diffraction patterns of compound *rac*-Si₃-2b in the Dark conglomerate phase at T = 120 °C; the left picture shows wide angle pattern, the right picture shows the the small angle pattern; (b) θ -scan over the wide angle pattern the inset shows the diffuse scattering in the wide angle region.

1.3 Electrooptical investigations

Fig. S5. Switching current response obtained under a triangular wave field (6 μ m noncoated ITO cells); a) (*S*)-Si₃-1a (114 °C, 160 Vpp, 51 Hz, 5 k Ω); b) *rac*-Si₃-2a (108 °C, 300 Vpp, 100 Hz, 5 k Ω).

2. Synthesis and analytical data

The characterization of the synthesized compounds are based on ¹H-, ¹³C-NMR (Varian Unity 500 and Varian Unity 400 spectrometers, in CDCl₃ solutions, with tetramethylsilane as internal standard), MS [AMD 402 (electron impact, 70 eV)]. Microanalyses were performed using a Leco CHNS-932 elemental analyzer.

Transition temperatures were measured using a Mettler FP-82 HT hot stage and control unit in conjunction with a Nikon Optiphot-2 polarizing microscope. The associated enthalpies were obtained from DSC-thermograms which were recorded on a Perkin-Elmer DSC-7, heating and cooling rate: 10 °C min⁻¹. The electro-optical switching characteristics were examined using a triangular-wave method or under a DC field using non-polyimide coated ITO cells, EHC Japan.

Materials: (S)-(-)-2-Methyl-1-butanol (Fluka, 95.0%, $[\alpha]_{D}^{20}$ -6.3 ± 0.5°, c = 10 in EtOH), (S)-

(-)- β -Citronellol (Aldrich, $\geq 99.0\%$, $[\alpha]_{p}^{20}$ -5.3°, neat), 3,7-Dimethyl-1-octanol (Aldrich,

99.0%) and 2-Ethyl-1-hexanol (Fluka, \geq 99.0%) were purchased commercially. The optical rotation of 3,7-Dimethyl-1-octanol was also measured using a Perkin-Elmer polarimeter 341 Serial No. 7146 and found $\left[\alpha\right]_{_{589}}^{_{20}}$ -1.5° (neat). As the stereogenic center of chiral alcohols is not touched during the synthesis it can be assumed that the optical purity of the final products

corresponds to the starting material.

The preparation procedures and spectroscopic data for 4'-Benzyloxybiphenyl-3-ol (**A**) are given in ref.^{S1,S2}. 4-[4-(Alkenyloxy)benzoyloxy]benzoic acids **D**/*n* were first reported by Achten et al.^{S3} and Schiewe et al.^{S4}. The synthesis was carried out by using known procedures^{S5}. The alkyl tosylates were prepared from the corresponding starting alcohols as described by Otterholm et al.^{S6} and used in the first step of the synthesis of 4-(4-alkyloxybenzoyloxy)benzoic acids **B**/*n*. 4-(4-alkenyloxybenzoyloxy)benzoic acids **D**/*n* which are attached to on the one sides of the biphenyl central unit were carried out according to similar procedures described in ref.^{S5}. 4-[4-(S)-2-Methylbutoxybenzoyloxy]benzoic acid (S)-**B**/**1**) and 4-[4-(3,7-dimethyloctyloxy)benzoyloxy]benzoic acid (rac-**B**/**3**) were first reported by Xie et al.^{S7} and Ocak et al.^{S8}, respectively. Spectroscopic data and mesomorphic data for these compounds were given in ref.^{S8}

2.1 4-(4-Alkoxybenzoyloxy)benzoic acids B/1-B/4

4-[4-(2-Ethylhexyloxy)benzoyloxy]benzoic acid B/2 (C₂₂H₂₆O₅; 370.44 g/mol)

Yield: 76%, white crystals; *T*/°C [ΔH kJ/mol]: Cr₁ 65 [1.8] Cr₂ 97 [7.2] Cr₃ 134 [7.7] N 155 [1.4] Iso. ¹**H-NMR:** δ (ppm) = 8.17 (d, $J \approx 8.7$ Hz; 2 Ar-H), 8.12 (d, $J \approx 8.9$ Hz; 2 Ar-H), 7.32 (d, $J \approx 8.7$ Hz; 2 Ar-H), 6.97 (d, $J \approx 8.9$ Hz; 2 Ar-H), 3.92 (d, $J \approx 6.0$ Hz; 2H, OCH₂), 1.78-1.72 (m; 1H, CH), 1.55-1.24 (m; 8H, 4 CH₂), 0.95-0.88 (m; 6H, 2 CH₃). ¹³C-NMR: δ (ppm) =170.02 (COOH), 164.33 (CO), 164.06, 155.52, 126.49, 120.90 (Ar-C), 132.39, 131.86, 122.01, 114.45 (Ar-CH), 70.87 (OCH₂), 39.29 (CH), 30.47, 29.06, 23.83, 23.01 (CH₂), 14.06, 11.09 (CH₃). **MS (EI**): m/z (%) = 370 (4) [M⁺], 191 (76) [M⁺-C₇H₅O₃], 121 (100) [C₅H₁₁].

4-[4-((S)-Citronellyloxy)benzoyloxy]benzoic acid (S)-B/4 (C₂₄H₂₈O₅; 396.48 g/mol)

Yield: 86%, white crystals; *T*/°C [ΔH kJ/mol]: Cr 88 [5.6] SmC* 143 [1.1] N* 184 [1.7] Iso. ¹**H-NMR:** δ (ppm) = 8.17 (d, $J \approx 8.9$ Hz; 2 Ar-H), 8.12 (d, $J \approx 8.9$ Hz; 2 Ar-H), 7.32 (d, $J \approx 8.9$ Hz; 2 Ar-H), 6.96 (d, $J \approx 8.9$ Hz; 2 Ar-H), 5.09 (t, $J \approx 7.1$ Hz; 1H, CH=C(CH₃)₂), 4.12-4.03 (m; 2H, OCH₂), 2.05-1.96 (m; 2H, CH₂-CH=C(CH₃)₂), 1.89-1.79 (m; 1H, CH), 1.72-1.55 (m; 8H, CH₂, 2 CH₃), 1.44-1.18 (m; 2H, CH₂CH₂CH=C(CH₃)₂), 0.96 (d, $J \approx 6.4$ Hz; 3H, CH₃). ¹³**C-NMR:** δ (ppm) = 169.81 (COOH), 164.14 (CO), 163.65, 155.39, 126.43, 120.95 (Ar-C), 132.31, 131.76, 121.91, 114.38 (Ar-CH), 131.33 (CH=C(CH₃)₂), 124.46 (<u>C</u>H=C(CH₃)₂), 66.73 (OCH₂), 37.17 (CH), 36.01, 29.62, 25.79 (CH₂), 25.54, 19.65, 17.77 (CH₃).

2.2 4'-Benzyloxy-3-[4-(alkoxy)benzoyloxy]benzoyloxy]biphenyls Bz-C/1 - Bz-C/3 and 3'-[4-(alkoxy)benzoyloxy]biphenyl-4-ols C/1 – C/3

descriptions^{\$9}, earlier 4'-benzyloxy-3-[4-Following the synthesis of the (alkoxy)benzoyloxy]benzoyloxy]biphenyls Bz-C/1 - Bz-C/4 was carried out by the esterification of 4'-benzyloxybiphenyl-3-ol (A) with the corresponding 4-(4alkyloxybenzoyloxy)benzoic acids B/1-B/4. The crude products were purified by column chromatography on silica gel, elution with dichloromethane and crystallized from ethanol.

The 3'-[4-(alkoxy)benzoyloxy]benzoyloxy]biphenyl-4-ols C/1-C/3 were obtained by catalytic hydrogenation of the 4'-benzyloxy-3-[4-(alkoxy)benzoyloxy]benzoyloxy]biphenyls **Bz-C/1 - Bz-C/4** according to procedures described in ref.^{S2}. The double bond in the terminal chain of (S)-(-)- 4'-benzyloxy-3-[4-(β -citronellyloxy)benzoyloxy]benzoyloxy]biphenyl (S)-**Bz-C/4** was also reduced under catalytic hydrogenation conditions (H₂, Pd/C in THF) to give

(S)-3'-[4-(3,7-dimethyloctyloxy)benzoyloxy]benzoyloxy]biphenyl-4-ol (S)-C/3. The compounds were purified by column chromatography on silica gel using dichloromethane as eluent.

4'-Benzyloxy-3-[4-((S)-2-methylbutoxy)benzoyloxy]benzoyloxy]biphenyl (S)-Bz-C/1 $(C_{38}H_{34}O_6; 586.68 \text{ g/mol})$

Yield: 72%, white crystals; m.p.: 136 °C ¹**H-NMR:** δ (ppm) =8.28 (d, $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d, $J \approx 8.9$ Hz; 2 Ar-H), 7.53 (d, $J \approx 8.7$ Hz; 2 Ar-H), 7.45-7.43 (m, 4 Ar-H), 7.40-7.30 (m, 6 Ar-H), 7.16-7.14 (m, 1 Ar-H), 7.03 (d, $J \approx 8.7$ Hz; 2 Ar-H), 6.98 (d, $J \approx 8.9$ Hz; 2 Ar-H), 5.10 (s, 2H, OCH₂Ph), 3.91, 3.82 (2dd, $J \approx 9.1$ Hz and $J \approx 6.0$ Hz each; 2H, OCH₂, (chiral alkyl chain)), 1.94-1.85 (m, 1H, CH), 1.63-1.24 (m, 2H, CH₂), 1.04 (d, $J \approx 6.6$ Hz; 3H, CH₃), 0.96 (t, $J \approx 7.5$ Hz; 3H, CH₃). ¹³C-NMR: δ (ppm) =164.51, 164.35 (CO), 163.99, 158.66, 155.40, 151.31, 142.50, 136.90, 132.96, 126.94, 120.94 (Ar-C), 132.40, 131.80, 129.72, 128.61, 128.25, 128.00, 127.48, 124.24, 122.10, 119.97, 119.85, 115.20, 114.45 (Ar-CH), 73.16, 70.10 (OCH₂), 34.63 (CH), 26.08 (CH₂), 16.47, 11.28 (CH₃). **MS** (**EI**): m/z (%) = 586 $(19) [M^+], 311 (10) [M^+-C_{19}H_{15}O_2], 191 (100) [C_7H_4O_2], 121 (50) [C_5H_{11}], 91 (40) [C_2H_6].$

3'-[4-((S)-2-Methylbutoxy)benzoyloxy]benzoyloxy]biphenyl-4-ol (S)-C/1 ($C_{31}H_{28}O_6$; 496.56 g/mol)

Yield: 73%, yellowish crystals; m.p.: 138 °C. ¹H-NMR: δ (ppm) =8.28 (d, $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d, $J \approx 8.9$ Hz; 2 Ar-H), 7.47 (d, $J \approx 8.7$ Hz; 2 Ar-H), 7.45-7.42 (m, 2 Ar-H), 7.37-7.35 (m, 3 Ar-H), 7.16-7.13 (m, 1 Ar-H), 6.98 (d, $J \approx 8.9$ Hz; 2 Ar-H), 6.88 (d, $J \approx 8.7$ Hz; 2 Ar-H), 4.81 (s, 1H, OH), 3.91, 3.82 (2dd, $J \approx 9.1$ Hz and $J \approx 6.0$ Hz each; 2H, OCH₂, (chiral alkyl chain)), 1.94-1.84 (m, 1H, CH), 1.61-1.24 (m, 2H, CH₂), 1.04 (d, $J \approx 6.6$ Hz; 3H, CH₃), 0.96 (t, $J \approx 7.5$ Hz; 3H, CH₃). ¹³C-NMR: δ (ppm) =164.47, 164.28 (CO), 163.97, 155.38, 151.29, 142.46, 132.97, 126.92, 120.95 (Ar-C), 132.37, 131.77, 129.69, 128.45, 124.20, 122.07, 119.95, 119.84, 115.69, 114.45 (Ar-CH), 73.21 (OCH₂), 34.69 (CH), 26.14 (CH₂), 16.52, 11.32 (CH₃).

4'-Benzyloxy-3-[4-(2-Ethylhexyloxy)benzoyloxy]benzoyloxy]biphenyl $(C_{41}H_{40}O_6; 628.76 \text{ g/mol})$

rac-Bz-C/2

Yield: 62%, white crystals; m.p.: 93 °C. ¹H-NMR: δ (ppm) =8.28 (d, $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d, $J \approx 8.9$ Hz; 2 Ar-H), 7.52 (d, $J \approx 8.7$ Hz; 2 Ar-H), 7.45-7.43 (m, 4 Ar-H), 7.40-7.29 (m, 6 Ar-H), 7.18-7.13 (m, 1 Ar-H), 7.03 (d, $J \approx 8.7$ Hz; 2 Ar-H), 6.97 (d, $J \approx 8.9$ Hz; 2 Ar-

H), 5.09 (s, 2H, OCH₂Ph), 3.93 (d, $J \approx 6.0$ Hz; 2H, OCH₂), 1.77-1.73 (m, 1H, CH), 1.52-1.24 (m, 8H, 4 CH₂), 0.95-0.90 (m, 6H, 2 CH₃). ¹³C-NMR: δ (ppm) =164.49, 164.33 (CO), 164.05, 158.62, 155.38, 151.27, 142.47, 136.88, 132.94, 126.91, 120.88 (Ar-C), 132.38, 131.79, 129.70, 128.59, 128.24, 127.98, 127.46, 124.23, 122.08, 119.95, 119.84, 115.18, 114.43 (Ar-CH), 70.86, 70.08 (OCH₂), 39.27 (CH), 30.45, 29.04, 23.80, 22.98 (CH₂), 14.03, 11.07 (CH₃). **MS** (**EI**): m/z (%) =628 (10) [M⁺], 353 (5) [M⁺-C₁₉H₁₅O₂], 233 (100) [C₇H₄O₂], 121 (89) $[C_8H_{17}], 91 (54) [C_2H_6].$

3'-[**4-**(2-*Ethylhexyloxy*)*benzoyloxy*]*benzoyloxy*]*biphenyl-***4-***ol* rac-**C-**2 ($C_{34}H_{34}O_{6}$; 538.64 g/mol)

Yield: 83%, yellowish crystals; m.p.: 96 °C. ¹H-NMR: δ (ppm) =8.28 (d, $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d, $J \approx 8.9$ Hz; 2 Ar-H), 7.47-7.43 (m, 4 Ar-H), 7.37-7.35 (m, 3 Ar-H), 7.16-7.13 (m, 1 Ar-H), 6.98 (d, $J \approx 8.9$ Hz; 2 Ar-H), 6.86 (d, $J \approx 8.7$ Hz; 2 Ar-H), 3.93 (d, $J \approx 5.8$ Hz; 2H, OCH₂), 1.79-1.72 (m, 1H, CH), 1.53-1.24 (m, 8H, 4 CH₂), 0.95-0.89 (m, 6H, 2 CH₃). ¹³C-**NMR:** δ (ppm) =164.62, 164.40 (CO), 164.07, 155.52, 155.40, 151.26, 142.51, 132.79, 126.89, 120.85 (Ar-C), 132.39, 131.81, 129.71, 128.42, 124.23, 122.11, 119.93, 119.80, 115.68, 114.45 (Ar-CH), 70.87 (OCH₂), 39.27 (CH), 30.45, 29.04, 23.80, 22.99 (CH₂), 14.04, 11.07 (CH₃).

4'-Benzyloxy-3-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy]biphenyl $(C_{43}H_{44}O_6; 656.82 \text{ g/mol})$

rac-Bz-C-3

Yield: 77%, white crystals; m.p.: 117 °C. ¹**H-NMR:** δ (ppm) =8.28 (d, $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d, $J \approx 8.7$ Hz; 2 Ar-H), 7.52 (d, $J \approx 8.7$ Hz; 2 Ar-H), 7.45-7.43 (m, 4 Ar-H), 7.40-7.29 (m, 6 Ar-H), 7.16-7.13 (m, 1 Ar-H), 7.03 (d, $J \approx 8.7$ Hz; 2 Ar-H), 6.97 (d, $J \approx 8.7$ Hz; 2 Ar-H), 5.09 (s, 2H, OCH₂Ph), 4.10-4.04 (m, 2H, OCH₂), 1.90-1.81 (m; 1H, CH), 1.68-1.47, 1.38-1.15 (2m; 9H, CH, 4 CH₂), 0.94 (d, $J \approx 6.4$ Hz; 3H, CH₃), 0.87 (d, $J \approx 6.6$ Hz; 6H, 2 CH₃). ¹³**C-NMR:** δ (ppm) =164.49, 164.31 (CO), 163.79, 158.64, 155.37, 151.29, 142.49, 136.88, 132.94, 126.92, 120.95 (Ar-C), 132.40, 131.79, 129.70, 128.59, 128.24, 127.98, 127.46, 124.23, 122.08, 119.95, 119.84, 115.18, 114.42 (Ar-CH), 70.09, 66.72 (OCH₂), 39.20, 29.81, 27.95, 24.62 (CH₂), 37.23, 35.97 (CH), 22.67, 22.57, 19.62 (CH₃). MS (EI): m/z (%) = 656 (7) $[M^+]$, 381 (3) $[M^+-C_{19}H_{15}O_2]$, 261 (100) $[C_7H_4O_2]$, 121 (52) $[C_{10}H_{21}]$, 91 (45) $[C_2H_6]$.

3'-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy]biphenyl-4-ol rac-C-3 $(C_{36}H_{38}O_6;$ 566.69 g/mol)

Yield: 92%, yellowish crystals; m.p.: 129 °C. ¹H-NMR: δ (ppm) =8.28 (d, $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d, $J \approx 8.9$ Hz; 2 Ar-H), 7.47-7.43 (m, 4 Ar-H), 7.37-7.35 (m, 3 Ar-H), 7.16-7.13 (m, 1 Ar-H), 6.97 (d, $J \approx 8.9$ Hz; 2 Ar-H), 6.87 (d, $J \approx 8.7$ Hz; 2 Ar-H), 4.95 (s, 1H, OH), 4.10-4.05 (m, 2H, OCH₂), 1.88-1.81 (m; 1H, CH), 1.67-1.47, 1.38-1.15 (2m; 9H, CH, 4 CH₂), 0.95 (d, $J \approx 6.4$ Hz; 3H, CH₃), 0.86 (d, $J \approx 6.6$ Hz; 6H, 2 CH₃). ¹³C-NMR: δ (ppm) =164.59, 164.37 (CO), 163.80, 155.47, 155.39, 151.26, 142.49, 132.85, 126.89, 120.92 (Ar-C), 132.41, 131.81, 129.71, 128.43, 124.23, 122.10, 119.93, 119.82, 115.68, 114.43 (Ar-CH), 66.73 (OCH₂), 39.20, 29.81, 27.95, 24.62 (CH₂), 37.23, 35.96 (CH), 22.67, 22.57, 19.61 (CH₃).

Yield: 42%, white crystals; m.p.: 109 °C. ¹H-NMR: δ (ppm) =8.28 (d, $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d, $J \approx 8.7$ Hz; 2 Ar-H), 7.52 (d, $J \approx 8.9$ Hz; 2 Ar-H), 7.45-7.43 (m, 4 Ar-H), 7.40-7.29 (m, 6 Ar-H), 7.16-7.13 (m, 1 Ar-H), 7.03 (d, $J \approx 8.7$ Hz; 2 Ar-H), 6.97 (d, $J \approx 8.9$ Hz; 2 Ar-H), 5.09 (s, 3H, OCH₂Ph, C<u>H</u>=C(CH₃)₂), 4.10-4.05 (m, 2H, OCH₂), 2.05-1.96 (m, 2H, C<u>H₂-CH=C(CH₃)₂), 1.91-1.79 (m, 1H, CH), 1.73-1.53 (m, 8H, CH₂, 2 CH₃), 1.44-1.17 (m, 2H, C<u>H</u>₂CH₂CH=C(CH₃)₂), 0.96 (d, $J \approx 6.4$ Hz; 3H, CH₃). ¹³C-NMR: δ (ppm) =164.51, 164.33 (CO), 163.79, 158.66, 155.39, 151.31, 142.51, 136.90, 132.97, 126.94, 120.99 (Ar-C), 132.42, 131.81, 129.72, 128.60, 128.25, 128.00, 127.48, 124.25, 122.09, 119.97, 119.85, 115.20, 114.44 (Ar-CH), 131.43 (CH=C(CH₃)₂), 124.53 (CH=C(CH₃)₂), 70.11, 66.69 (OCH₂), 37.08 (CH), 35.92, 29.49, 25.71 (CH₂), 25.43, 19.54, 17.67 (CH₃). **MS** (EI): m/z (%) =654 (12) [M⁺], 379 (3) [M⁺-C₁₉H₁₅O₂], 259 (100) [C₇H₄O₂], 121 (94) [C₁₀H₁₉], 91 (85) [C₂H₆].</u>

3'-[4-(S)-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy]biphenyl-4-ol (S)-C-3 (C₃₆H₃₈O₆; 566.69 g/mol)

Yield: 95%, white crystals. ¹**H-NMR:** δ (ppm) =8.28 (d, $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d, $J \approx 8.9$ Hz; 2 Ar-H), 7.47-7.43 (m, 4 Ar-H), 7.37-7.35 (m, 3 Ar-H), 7.16-7.13 (m, 1 Ar-H), 6.97 (d, $J \approx 8.9$ Hz; 2 Ar-H), 6.87 (d, $J \approx 8.7$ Hz; 2 Ar-H), 4.95 (s, 1H, OH), 4.10-4.05 (m, 2H, OCH₂), 1.88-1.81 (m; 1H, CH), 1.67-1.47, 1.38-1.15 (2m; 9H, CH, 4 CH₂), 0.95 (d, $J \approx 6.4$ Hz; 3H, CH₃), 0.86 (d, $J \approx 6.6$ Hz; 6H, 2 CH₃). ¹³C-NMR: δ (ppm) =164.57, 164.36 (CO), 163.80, 155.60 155.38, 151.26, 142.54, 132.70, 126.90, 120.93 (Ar-C), 132.41, 131.81, 129.70, 128.40, 124.22, 122.09, 119.92, 119.78, 115.68, 114.43 (Ar-CH), 66.73 (OCH₂), 39.20, 29.81, 27.95, 24.62 (CH₂), 37.23, 35.97 (CH), 22.67, 22.57, 19.62 (CH₃).

2.3 Olefins 1-3

Compounds 1-3 with a terminal double bond were obtained by esterification of 3'-[4-(alkoxy)benzoyloxy]benzoyloxy]biphenyl-4-ols C1-C/3 (2 mmol) with the appropriate 4-[4-(alkenyloxy)benzoyloxy]benzoic acid D/n (2 mmol), using 2.3 mmol of dicyclohexylcarbodiimide (DCC) as condensation agent and DMAP (0.4 mmol) as catalyst in 20 ml of dry dichloromethane. ^{S2,S9} The reaction mixture was stirred at room temperature under an argon atmosphere for 24 h. The precipitate was filtered, the solvent was evaporated. The crude products were purified by column chromatography on silica gel using dichloromethane as eluent and recrystallized from ethanol.

 $3'-{4-[4-((S)-2-Methylbutoxy)benzoyloxy]benzoyloxy}-4-{4-[4-(5-hexenyloxy)benzoyloxy]benzoyloxy}biphenyl (C₅₁H₄₆O₁₀; 818.92 g/mol)$

(*S*)-1a: Yield: 0.91 g (56%) of white crystals. ¹H-NMR: δ (ppm) =8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 4 Ar-H), 7.65 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.44 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.22-7.20 (m, 1 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.96 (d; $J \approx 8.9$ Hz; 2 Ar-H), 5.85-5.78 (m; 1H, CH₂=C<u>H</u>), 5.06-4.96 (m; 2H, C<u>H₂</u>=CH), 4.05 (t; $J \approx 6.4$ Hz; 2H, OCH₂), 3.90, 3.82 (2dd, $J \approx 9.1$ Hz and $J \approx 6.0$ Hz each; 2H, OCH₂, (chiral alkyl chain)), 2.16-2.11 (m; 2H, CH₂=CH-C<u>H₂)</u>, 1.92-1.87 (m; 1H, CH), 1.86-1.80 (m, 2H, CH₂), 1.64-1.24 (m; 2 CH₂), 1.03 (d; $J \approx 6.8$ Hz; 3H, CH₃), 0.96 (t; $J \approx 7.5$ Hz; 3H, CH₃). ¹³C-NMR: δ (ppm) = 164.42, 164.38, 164.26, 164.22 (CO), 163.92, 163.68, 155.39, 151.30, 150.61, 142.04, 138.00, 126.83, 121.06, 120.96 (Ar-C), 132.41, 132.37, 131.79, 129.82, 128.29, 124.66, 122.17, 122.09, 122.05, 120.43, 114.90, 114.46, 114.43 (Ar-CH), 138.27 (CH₂=<u>C</u>H), 114.14 (<u>C</u>H₂=CH), 73.26, 68.24 (OCH₂), 34.79 (CH), 33.49, 28.67, 26.26, 25.41 (CH₂), 16.65, 11.45 (CH₃). **MS (EI) :** m/z (%) =818 (4) [M⁺], 323 (6) [M⁺-C₃₁H₂₇O₆], 203 (67) [C₇H₄O₂], 191 (63) [M⁺-C₃₉H₃₁O₈], 121 (100) [C₅H₁₁].

3'-{4-[4-(2-Ethylhexyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-(5-hexenyloxy) benzoyloxy]benzoyloxy}biphenyl (C₅₄H₅₂O₁₀; 860.99 g/mol)

rac-2a: Yield: 0.98 g (57%) of white crystals. ¹H-NMR: δ (ppm) = 8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 4 Ar-H), 7.65 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.44 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.22-7.20 (m, 1 Ar-H), 6.98 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 5.87-5.77 (m; 1H, CH₂=C<u>H</u>), 5.06-4.97 (m; 2H, C<u>H₂</u>=CH), 4.05 (t; $J \approx 6.4$ Hz; 2H, OCH₂), 3.93 (d; $J \approx 5.8$ Hz; 2H, OCH₂), 2.17-2.11 (m; 2H, CH₂=CH-

C<u>H</u>₂), 1.87-1.79 (m; 2H, CH₂), 1.77-1.73 (m; 1H, CH), 1.63-1.25 (m; 5 CH₂), 0.96-0.89 (m; 6H, 2 CH₃). ¹³C-NMR: δ (ppm) = 164.49, 164.46, 164.34, 164.31 (CO), 164.07, 163.76, 155.45, 151.34, 150.65, 142.08, 138.04, 126.86, 121.03, 120.90 (Ar-C), 132.43, 132.40, 131.84, 129.86, 128.33, 124.70, 122.11, 122.08, 122.04, 120.62, 120.45, 114.91, 114.46 (Ar-CH), 138.33 (CH₂=<u>C</u>H), 114.42 (<u>C</u>H₂=CH), 70.87, 68.14 (OCH₂), 39.29 (CH), 33.36, 30.47, 29.06, 28.50, 25.23, 23.82, 23.01 (CH₂), 14.05, 11.09 (CH₃). **MS (EI) :** m/z (%) = 323 (9) [M⁺-C₃₄H₃₃O₆], 233 (66) [C₃₉H₃₁O₈], 203 (79) [M⁺-C₄₁H₃₇O₈], 121 (100) [C₆H₁₁].

3'-{4-[4-(2-Ethylhexyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-(10-undecenyloxy) benzoyloxy]benzoyloxy}biphenyl ($C_{59}H_{62}O_{10}$; 931.13 g/mol)

*rac-*2b: Yield: 1.34 g (72%) of white crystals. ¹H-NMR: δ (ppm) = 8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 4 Ar-H), 7.65 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.44 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.23-7.20 (m, 1 Ar-H), 6.98 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 5.85-5.75 (m; 1H, CH₂=C<u>H</u>), 5.00-4.90 (m; 2H, CH₂=CH), 4.04 (t; $J \approx 6.6$ Hz; 2H, OCH₂), 3.93 (d; $J \approx 6.0$ Hz; 2H, OCH₂), 2.15-2.00 (m; 2H, CH₂=CH), 4.04 (t; $J \approx 6.6$ Hz; 2H, OCH₂), 1.77-1.73 (m; 1H, CH), 1.55-1.24 (m; 10 CH₂), 0.95-0.89 (m; 6H, 2 CH₃). ¹³C-NMR: δ (ppm) = 164.44, 164.41, 164.30, 164.28 (CO), 164.05, 163.81, 155.44, 151.35, 150.66, 142.08, 138.03, 126.87, 121.01, 120.95 (Ar-C), 132.41, 132.39, 131.82, 129.85, 128.32, 124.68, 122.11, 122.07, 120.62, 120.45, 114.47, 114.45 (Ar-CH), 139.16 (CH₂=<u>C</u>H), 114.14 (<u>C</u>H₂=CH), 70.95, 68.43 (OCH₂), 39.37 (CH), 33.84, 30.56, 29.75, 29.53, 29.46, 29.38, 29.15, 29.14, 28.98, 26.03, 23.92, 23.07 (CH₂), 14.12, 11.17 (CH₃). **MS** (**EI**) : m/z (%) = 393 (4) [M⁺-C₃₄H₃₃O₆], 273 (96) [C₇H₄O₂], 233 (55) [M⁺-C₄₄H₄₁O₈], 121 (100) [C₈H₁₇].

3'-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-(5-hexenyloxy) benzoyloxy]benzoyloxy}biphenyl (C₅₆H₅₆O₁₀; 889.05 g/mol)

rac-3a: Yield: 0.99 g (56%) of white crystals. ¹H-NMR: δ (ppm) = 8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 4 Ar-H), 7.65 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.44 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.23-7.19 (m, 1 Ar-H), 6.98 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 5.87-5.77 (m; 1H, CH₂=C<u>H</u>), 5.06-4.97 (m; 2H, C<u>H₂</u>=CH), 4.10-4.04 (m; 4H, 2 OCH₂), 2.17-2.11 (m; 2H, CH₂=CH-C<u>H₂), 1.86-1.81 (m; 3H, CH₂, CH), 1.66-1.47, 1.35-1.15 (2m; 11H, CH, 5 CH₂), 0.95 (d; $J \approx 6.4$ Hz; 3H, CH₃), 0.87 (d; $J \approx 6.4$ Hz; 6H, 2 CH₃). ¹³C-NMR: δ (ppm) = 164.39, 164.37, 164.26, 164.21 (CO), 163.74, 155.38, 151.32, 150.55, 141.20, 138.00, 126.62, 126.40, 121.29, 120.93 (Ar-C), 132.39, 131.80,</u>

129.44, 128.28, 124.36, 122.09, 122.05, 120.61, 120.48, 114.90, 114.46 (Ar-CH), 138.27 (CH₂=<u>C</u>H), 114.12 (<u>C</u>H₂=CH), 68.25, 66.86 (OCH₂), 39.37 (CH₂), 37.40, 36.15 (CH), 33.50, 30.01, 28.67, 28.13, 25.42, 24.81 (CH₂), 22.85, 22.75, 19.82 (CH₃). **MS (EI) :** m/z (%) =323 (13) [M⁺-C₃₆H₃₇O₆], 261 (89) [C₃₉H₃₁O₈], 203 (100) [C₄₃H₄₁O₈], 121 (97) [C₆H₁₁].

3'-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-(10-undecenyloxy) benzoyloxy]benzoyloxy}biphenyl ($C_{61}H_{66}O_{10}$; 959.19 g/mol)

*rac-***3b**: Yield: 1.02 g (53%) of white crystals. ¹**H-NMR**: δ (ppm) =8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 2 Ar-H), 8.13 (d; $J \approx 8.9$ Hz; 2 Ar-H), 7.65 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.44 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.23-7.19 (m, 1 Ar-H), 6.98 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 5.85-5.75 (m; 1H, CH₂=C<u>H</u>), 5.00-4.90 (m; 2H, CH₂=CH), 4.10-4.07 (m; 2H, OCH₂), 4.04 (t; $J \approx 6.6$ Hz; 2H, OCH₂), 2.06-2.00 (m; 2H, CH₂=CH-C<u>H₂</u>), 1.89-1.78 (m; 3H, CH₂, CH), 1.68-1.43, 1.37-1.15 (2m; 21H, CH, 10 CH₂), 0.95 (d; $J \approx 6.4$ Hz; 3H, CH₃), 0.87 (d; $J \approx 6.6$ Hz; 6H, 2 CH₃). ¹³C-**NMR**: δ (ppm) = 164.48, 164.45, 164.34, 164.31 (CO), 163.82, 155.43, 151.34, 150.65, 142.07, 138.03, 126.86, 126.82, 121.06, 120.96 (Ar-C), 132.41, 131.83, 129.86, 128.32, 124.69, 122.11, 122.07, 120.61, 120.44, 114.42, 114.41 (Ar-CH), 139.18 (CH₂=<u>C</u>H), 114.14 (<u>CH₂=CH</u>), 68.38, 66.74 (OCH₂), 39.22 (CH₂), 37.25, 35.99 (CH), 33.78, 29.83, 29.47, 29.39, 29.32, 29.09, 29.07, 28.91, 27.96, 25.96, 24.64 (CH₂), 22.69, 22.59, 19.63 (CH₃). **MS (EI) :** m/z (%) = 393 (6) [M⁺-C₃₆H₃₇O₆], 273 (67) [C₇H₄O₂], 121 (100) [C₁₁H₂₁].

 $3'-{4-[4-((S)-3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-(10-undecenyloxy)benzoyloxy]benzoyloxy}biphenyl (C_{61}H_{66}O_{10}; 959.19 g/mol)$

(*S*)-3b: Yield: 0.48 g (25%) of white crystals. ¹H-NMR: δ (ppm) = 8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.15 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.65 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.45 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.23-7.19 (m, 1 Ar-H), 6.98 (d; $J \approx 8.7$ Hz; 2 Ar-H), 6.97 (d; $J \approx 8.7$ Hz; 2 Ar-H), 5.84-5.77 (m; 1H, CH₂=C<u>H</u>), 5.00-4.91 (m; 2H, CH₂=CH), 4.11-4.08 (m; 2H OCH₂), 4.04 (t; $J \approx 6.5$ Hz; 2H, OCH₂), 2.06-2.00 (m; 2H, CH₂=CH-C<u>H₂</u>), 1.88-1.78 (m; 3H, CH₂, CH), 1.68-1.46, 1.37-1.15 (2m; 21H, CH, 10 CH₂), 0.96 (d; $J \approx 6.2$ Hz; 3H, CH₃), 0.87 (d; $J \approx 6.6$ Hz; 6H, 2 CH₃). ¹³C-NMR: δ (ppm) = 164.49, 164.46, 164.34, 164.30 (CO), 163.81, 155.42, 151.32, 150.63, 142.06, 138.01, 126.85, 126.81, 121.80, 120.95 (Ar-C), 132.39, 131.81, 129.84, 128.30, 124.67, 122.09, 122.05, 120.60, 120.42, 114.41, 114.39 (Ar-CH), 139.16 (CH₂=<u>C</u>H), 114.11

2.4 Final compounds Si_x-1 - Si_x-3

The appropriate olefin **1-3** (0.5 mmol) was dissolved in anhydrous toluene (6 ml) under an argon atmosphere. To this solution, 1H-heptamethyldisiloxane or 2H-heptamethyldisiloxane (0.6 mmol) and two drops of Karstedt's catalyst (platinum-divinyltetramethyl-siloxane complex in xylene) were added.^{S2,S10} The reaction mixture was stirred at room temperature under an argon atmosphere for 48 h. The solvent was evaporated. All target compounds were purified by column chromatography (silica gel, eluent dichloromethane) followed by crystallization from ethanol.

3'-{4-[4-((S)-2-Methylbutoxy)benzoyloxy]benzoyloxy}-4-{4-[4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1-yl)hex-1-yloxy]benzoyloxy]benzoyloxy}biphenyl

(*S*)-**Si**₃-**1a**: Yield: 0.24 g (47%) of white crystals. ¹**H-NMR**: δ (ppm) = 8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 4 Ar-H), 7.65 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.44 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.23-7.19 (m, 1 Ar-H), 6.98 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 4.04 (t; $J \approx 6.6$ Hz; 2H, OCH₂), 3.91, 3.82 (2dd, $J \approx 9.1$ Hz and $J \approx 6.0$ Hz each; 2H, OCH₂, (chiral alkyl chain)), 1.93-1.88 (m; 1H, CH), 1.83-1.78 (m, 2H, CH₂), 1.62-1.24 (m; 4 CH₂), 1.04 (d; $J \approx 6.6$ Hz; 3H, CH₃), 0.96 (t; $J \approx 7.5$ Hz; 3H, CH₃), 0.57-0.52 (m; 2H, SiCH₂), 0.08 [s; 9H, Si-(CH₃)₃], 0.06 [s; 6H, Si-(CH₃)₂], 0.02 [s; 6H, Si-(CH₃)₂]. ¹³C-NMR: δ (ppm) =164.47, 164.44, 164.31, 164.30 (CO), 163.97, 163.81, 155.42, 151.32, 150.63, 142.06, 138.01, 126.83, 126.80, 120.92 (Ar-C), 132.39, 131.82, 129.84, 128.31, 124.68, 122.09, 122.05, 120.60, 120.43, 114.42, 114.40 (Ar-CH), 73.14, 68.38 (OCH₂), 34.61 (CH), 33.05, 29.00, 26.06, 25.67, 23.13 (CH₂), 18.19 (SiCH₂), 16.45, 11.26 (CH₃), 1.79, 1.25, 0.17 (CH₃). ²⁹Si-NMR: δ (ppm) = 7.38, 7.09, -20.97. C₅₈H₆₈O₁₂Si₃ (1041.42); Anal. Calc.: C, 66.89; H, 6.58. Found: C, 66.85; H, 6.47%.

3'-{4-[4-(2-Ethylhexyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1-yl)hex-1-yloxy]benzoyloxy]benzoyloxy}biphenyl

rac-Si₃-2a: Yield: 0.30 g (56%) of white crystals. ¹H-NMR: δ (ppm) = 8.29 (d; $J \approx 8.5$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.5$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 4 Ar-H), 7.66 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.45 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.23-7.19 (m, 1 Ar-H), 6.98 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 4.04 (t; $J \approx 6.6$ Hz; 2H, OCH₂), 3.93 (d; $J \approx 5.8$ Hz; 2H, OCH₂), 1.85-1.78 (m; 2H, CH₂), 1.76-1.73 (m; 1H, CH), 1.56-1.24 (m; 7 CH₂), 0.96-0.89 (m; 6H, 2 CH₃), 0.57-0.52 (m; 2H, SiCH₂), 0.08 [s; 9H, Si-(CH₃)₃], 0.06 [s; 6H, Si-(CH₃)₂], 0.02 [s; 6H, Si-(CH₃)₂]. ¹³C-NMR: δ (ppm) = 164.46, 164.44, 164.32, 164.30 (CO), 164.05, 163.82, 155.42, 151.32, 150.63, 142.06, 138.01, 126.83, 126.80, 120.94, 120.88 (Ar-C), 132.39, 132.38, 131.81, 129.84, 128.31, 124.68, 122.09, 122.05, 120.60, 120.43, 114.43, 114.40 (Ar-CH), 70.85, 68.38 (OCH₂), 39.27 (CH), 33.05, 30.45, 29.04, 29.00, 25.67, 23.80, 23.14, 22.99 (CH₂), 18.19 (SiCH₂), 14.03, 11.07 (CH₃), 1.79, 1.25, 0.17 (CH₃). ²⁹Si-NMR: δ (ppm) = 7.38, 7.09, -20.97. C₆₁H₇₄O₁₂Si₃ (1083.50); Anal. Calc.: C, 67.62; H, 6.88. Found: C, 67.52; H, 6.74%.

3'-{4-[4-(2-Ethylhexyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[11-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl)undec-1-yloxy]benzoyloxy]benzoyloxy}biphenyl

rac-Si_{3i}-2b: Yield: 0.37 g (65%) of white crystals. ¹H-NMR: δ (ppm) = 8.30 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.15 (d; $J \approx 8.9$ Hz; 4 Ar-H), 7.67 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.46 (broad s; 1 Ar-H), 7.38 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.31 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.24-7.22 (m, 1 Ar-H), 6.99 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.98 (d; $J \approx 8.9$ Hz; 2 Ar-H), 4.05 (t; $J \approx 6.6$ Hz; 2H, OCH₂), 3.94 (d; $J \approx 6.0$ Hz; 2H, OCH₂), 1.84-1.78 (m; 2H, CH₂), 1.77-1.73 (m; 1H, CH), 1.52-1.24 (m; 12 CH₂), 0.96-0.90 (m; 6H, 2 CH₃), 0.47-0.42 (m; 2H, SiCH₂), 0.08 [s; 18H, 2 Si-(CH₃)₃], -0.01 (s; 3H, Si-CH₃). ¹³C-NMR: δ (ppm) = 164.48, 164.45, 164.32, 164.31 (CO), 164.07, 163.84, 155.45, 151.35, 150.66, 142.08, 138.04, 126.86, 126.82, 120.96, 120.91 (Ar-C), 132.40, 131.84, 129.87, 128.33, 124.70, 122.12, 122.08, 120.60, 120.45, 114.46, 114.43 (Ar-CH), 70.88, 68.41 (OCH₂), 39.29 (CH), 33.22, 30.47, 29.61, 29.56, 29.36, 29.09, 29.06, 25.98, 23.83, 23.06, 23.01 (CH₂), 17.62 (SiCH₂), 14.06, 11.09 (CH₃), 1.85, -0.26 (CH₃). ²⁹Si-NMR: δ (ppm) = 6.82, -21.18. C₆₆H₈₄O₁₂Si₃ (1153.64); Anal. Calc.: C, 68.72; H, 7.34. Found: C, 68.80; H, 7.29%.

3'-{4-[4-(2-Ethylhexyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[11-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1-yl)undec-1-yloxy]benzoyloxy]benzoyloxy}biphenyl

rac-Si₃-2b: Yield: 0.34 g (59%) of white crystals. ¹H-NMR: δ (ppm) =8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 4 Ar-H), 7.65 (d; $J \approx 8.6$ Hz; 2 Ar-H)

H), 7.51-7.50 (m; 2 Ar-H), 7.44 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.6$ Hz; 2 Ar-H), 7.22-7.20 (m, 1 Ar-H), 6.98 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 4.04 (t; $J \approx 6.6$ Hz; 2H, OCH₂), 3.93 (d; $J \approx 5.9$ Hz; 2H, OCH₂), 1.82-1.78 (m; 2H, CH₂), 1.77-1.74 (m; 1H, CH), 1.54-1.23 (m; 12 CH₂), 0.95-0.89 (m; 6H, 2 CH₃), 0.52-0.49 (m; 2H, SiCH₂), 0.07 [s; 9H, Si-(CH₃)₃], 0.04 [s; 6H, Si-(CH₃)₂], 0.00 [s; 6H, Si-(CH₃)₂]. ¹³C-NMR: δ (ppm) =164.47, 164.44, 164.32, 164.30 (CO), 164.05, 163.82, 155.42, 151.32, 150.63, 142.06, 138.01, 126.83, 126.80, 120.88 (Ar-C), 132.39, 132.38, 131.81, 129.85, 128.30, 124.68, 122.10, 122.05, 120.43, 114.43, 114.40 (Ar-CH), 70.85, 68.38 (OCH₂), 39.27 (CH), 33.41, 30.45, 29.60, 29.55, 29.53, 29.36, 29.35, 29.07, 29.04, 25.96, 23.80, 23.20, 22.99 (CH₂), 18.27 (SiCH₂), 14.03, 11.07 (CH₃), 1.78, 1.24, 0.18 (CH₃). ²⁹Si-NMR: δ (ppm) = 7.49, 7.05, -21.05. C₆₆H₈₄O₁₂Si₃ (1153.64); Anal. Calc.: C, 68.71; H, 7.33. Found: C, 68.65; H, 7.26%.

3'-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1-yl)hex-1-yloxy]benzoyloxy]benzoyloxy}biphenyl

rac-Si₃-3a: Yield: 0.16 g (30%) of white crystals. ¹H-NMR: δ (ppm) = 8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.15 (d; $J \approx 8.9$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 2 Ar-H), 7.66 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.45 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.23-7.19 (m, 1 Ar-H), 6.98 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 4.11-4.08 (m; 2H OCH₂), 4.04 (t; $J \approx 6.5$ Hz; 2H, OCH₂), 1.85-1.79 (m; 3H, CH₂, CH), 1.66-1.47, 1.39-1.15 (2m; 15H, CH, 7 CH₂), 0.95 (d; $J \approx 6.4$ Hz; 3H, CH₃), 0.87 (d; $J \approx 6.6$ Hz; 6H, 2 CH₃), 0.57-0.53 (m; 2H, SiCH₂), 0.08 [s; 9H, Si-(CH₃)₃], 0.06 [s; 6H, Si-(CH₃)₂], 0.02 [s; 6H, Si-(CH₃)₂]. ¹³C-NMR: δ (ppm) = 164.45, 164.43, 164.31, 164.30 (CO), 164.16, 163.69, 155.34, 151.26, 150.58, 141.99, 137.95, 126.86, 126.82, 121.99, 120.97 (Ar-C), 132.32, 131.74, 129.77, 128.24, 124.60, 122.08, 122.03, 120.62, 120.38, 114.42, 114.41 (Ar-CH), 68.45, 66.81 (OCH₂), 39.31 (CH₂), 37.35, 36.10 (CH), 33.15, 29.96, 29.13, 28.07, 25.80, 24.75, 23.26 (CH₂), 22.78, 22.69, 19.76 (CH₃), 18.35 (SiCH₂), 1.95, 1.41, 0.34 (CH₃). ²⁹Si-NMR: δ (ppm) = 7.37, 7.09, - 20.97. C₆₃H₇₈O₁₂Si₃(1111.56); Anal. Calc.: C, 68.07; H, 7.07. Found: C, 68.36; H, 6.76%.

3'-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[11-(1,1,1,3,5,5,5-heptamethyltrisiloxan-3-yl)undec-1-yloxy]benzoyloxy]benzoyloxy}biphenyl

rac-Si_{3i}-3b: Yield: 0.33 g (56%) of white crystals. ¹H-NMR: δ (ppm) = 8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.15 (d; $J \approx 8.9$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 2 Ar-H), 7.65 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.51-7.50 (d; 2 Ar-H), 7.45 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.23-7.20 (m, 1 Ar-H), 6.98 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 4.11-4.08 (m; 2H OCH₂), 4.04 (t; $J \approx 6.6$ Hz; 2H, OCH₂), 1.85-1.79 (m; 3H, CH₂, CH), 1.69-1.45, 1.35-1.15 (2m; 25H, CH, 12 CH₂), 0.95 (d; $J \approx 6.4$ Hz; 3H, CH₃), 0.87 (d; $J \approx 6.4$ Hz; 6H, 2 CH₃), 0.44-0.42 (m; 2H, SiCH₂), 0.07 [s; 18H, 2 Si-(CH₃)₃], -0.02 (s; 3H, Si-CH₃). ¹³C-NMR: δ (ppm) = 164.46, 164.44, 164.32, 164.30 (CO), 163.82, 163.79, 155.42, 151.32, 150.63, 142.06, 138.01, 126.84, 126.80, 120.96 (Ar-C), 132.40, 131.82, 129.84, 128.31, 124.67, 122.10, 122.05, 120.60, 120.43, 114.42, 114.41 (Ar-CH), 68.38, 66.72 (OCH₂), 39.20 (CH₂), 37.23, 35.97 (CH), 33.20, 29.81, 29.58, 29.54, 29.34, 29.07, 27.94, 25.96, 24.62, 23.04 (CH₂), 22.67, 22.57, 19.62 (CH₃), 17.60 (SiCH₂), 1.83, -0.28 (CH₃). ²⁹Si-NMR: δ (ppm) = 6.83, -21.17. C₆₈H₈₈O₁₂Si₃ (1181.69); Anal. Calc.: C, 69.11; H, 7.50. Found: C, 69.18; H, 7.43%.

3'-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[11-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1-yl)undec-1-yloxy]benzoyloxy]benzoyloxy}biphenyl

rac-Si₃-3b: Yield: 0.40 g (68%) of white crystals. ¹H-NMR: δ (ppm) = 8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.15 (d; $J \approx 8.9$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 2 Ar-H), 7.65 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.45 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.30 (d; $J \approx 8.5$ Hz; 2 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 6.98 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 4.10-4.06 (m; 2H OCH₂), 4.04 (t; $J \approx 6.5$ Hz; 2H, OCH₂), 1.87-1.79 (m; 3H, CH₂ CH), 1.68-1.45, 1.37-1.14 (2m; 25H, CH, 12 CH₂), 0.95 (d; $J \approx 6.5$ Hz; 3H, CH₃), 0.87 (d; $J \approx 6.5$ Hz; 6H, 2 CH₃), 0.53-0.50 (m; 2H, SiCH₂), 0.07 [s; 9H, Si-(CH₃)₃], 0.05 [s; 6H, Si-(CH₃)₂], 0.00 [s; 6H, Si-(CH₃)₂]. ¹³C-NMR: δ (ppm) = 164.48, 164.46, 164.32, 164.30 (CO), 163.84, 163.81, 155.44, 151.34, 150.65, 142.08, 138.03, 126.86, 126.82, 120.97, 120.96 (Ar-C), 132.42, 131.83, 129.86, 128.32, 124.69, 122.11, 122.07, 120.62, 120.44, 114.44, 114.42 (Ar-CH), 68.40, 66.74 (OCH₂), 39.22 (CH₂), 37.25, 35.99 (CH), 33.43, 29.83, 29.61, 29.57, 29.55, 29.38, 29.37, 29.09, 27.96, 25.98, 24.64, 23.22 (CH₂), 22.69, 22.59, 19.64 (CH₃), 18.28 (SiCH₂), 1.80, 1.26, 0.20 (CH₃). ²⁹Si-NMR: δ (ppm) = 7.48, 7.04, -21.05. C₆₈H₈₈O₁₂Si₃ (1181.69); Anal. Calc.: C, 69.11; H, 7.50. Found: C, 68.81; H, 7.70%.

3'-{4-[4-((S)-3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[11-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1-yl)undec-1-yloxy]benzoyloxy]benzoyloxy}biphenyl

(*S*)-**Si**₃-**3b**: Yield: 0.24 g (41%) of white crystals. ¹**H-NMR**: δ (ppm) = 8.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.28 (d; $J \approx 8.7$ Hz; 2 Ar-H), 8.14 (d; $J \approx 8.9$ Hz; 2 Ar-H), 8.13 (d; $J \approx 8.9$ Hz; 2 Ar-H), 7.65 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.51-7.50 (m; 2 Ar-H), 7.44 (broad s; 1 Ar-H), 7.37 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.36 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.29 (d; $J \approx 8.7$ Hz; 2 Ar-H), 7.22-7.18 (m, 1 Ar-H), 6.97 (d; $J \approx 8.9$ Hz; 2 Ar-H), 6.96 (d; $J \approx 8.9$ Hz; 2 Ar-H), 4.10-4.08 (m; 2H OCH₂), 4.04 (t; $J \approx 6.6$ Hz; 2H, OCH₂), 1.85-1.78 (m; 3H, CH₂, CH), 1.68-1.46, 1.35-1.14 (2m; 25H, CH, 12 CH₂), 0.95 (d; $J \approx 6.4$ Hz; 3H, CH₃), 0.86 (d; $J \approx 6.6$ Hz; 6H, 2 CH₃), 0.51-0.49 (m; 2H, SiCH₂), 0.07 [s; 9H, Si-(CH₃)₃], 0.04 [s; 6H, Si-(CH₃)₂], 0.00 [s; 6H, Si-(CH₃)₂]. ¹³C-NMR: δ (ppm) = 164.46, 164.44, 164.31, 164.30 (CO), 163.82, 163.79, 155.42, 151.32, 150.63, 142.06, 138.01, 126.85, 126.80, 120.96 (Ar-C), 132.40, 131.82, 129.84, 128.31, 124.68, 122.10, 122.05, 120.43, 114.42, 114.40 (Ar-CH), 68.38, 66.72 (OCH₂), 39.20 (CH₂), 37.23, 35.97 (CH), 33.41, 29.81, 29.59, 29.55, 29.53, 29.36, 29.34, 29.06, 27.94, 25.96, 24.62, 23.20 (CH₂), 22.67, 22.57, 19.61 (CH₃), 18.27 (SiCH₂), 1.78, 1.24, 0.18 (CH₃). ²⁹Si-NMR: δ (ppm) = 7.48, 7.04, -21.05. **C₆₈H₈₈O₁₂Si₃** (1181.69).

Fig. S6. ¹H-NMR spectrum (CDCl₃, 500 MHz) of compound *rac*-Si₃-3b.

Fig. S7. ¹³C-NMR spectrum (CDCl₃, 125 MHz) of compound *rac*-Si₃-3b.

Fig. S8. ²⁹Si-NMR spectrum (CDCl₃, 100 MHz) of compound *rac*-Si₃-3b.

Fig. S9. ¹H-NMR spectrum (CDCl₃, 400 MHz) of compound (S)-Si₃-3b.

Fig. S10. ¹³C-NMR spectrum (CDCl₃, 125 MHz) of compound (*S*)-**Si₃-3b**.

.

Fig. S11. ²⁹Si-NMR spectrum (CDCl₃, 100 MHz) of compound (S)-Si₃-3b.

3. References

S1 (a) N. Miyaura, T. Yanagi and A. Suzuki, *Synth. Commun.*, 1981, **11**, 513-519; (b) N. Miyaura and A. Suzuki, *Chem. Rev.*, 1995, **95**, 2457-2483; (c) M. Hird, G. W. Gray and K. J. Toyne, *Mol. Cryst. Liq. Cryst.*, 1991, **206**, 187-204.

S2 C. Keith, R. Amaranatha Reddy, A. Hauser, U. Baumeister and C. Tschierske, J. Am. Chem. Soc., 2006, **128(9)**, 3051-3066.

S3 R. Achten, A. Koudijs, M. Giesbers, A. T. M. Marcelis and E. J. R. Sudhölter, *Liq. Cryst.*, 2005, **32**, 277.

S4 B. Schiewe, A. Hohmuth, W. Weissflog and H. Kresse, *Mol. Cryst. Liq. Cryst.*, 1996, 287, 115-127.

S5 (a) C. Keith, R. Amaranatha Reddy, U. Baumeister, H. Kresse, J. Lorenzo Chao, H. Hahn, H. Lang and C. Tschierske, *Chem. Eur. J.*, 2007, **13**, 2556-2577. (b) R. Amaranatha Reddy; U. Baumeister, C. Keith, H. Hahn, H. Lang and C. Tschierske, *Soft Matter*, 2007, **3**, 558–570.

S6 B. Otterholm, M. Nilsson, S. T. Lagerwall and K. Skarp, *Liquid Crystals*, 1987, 2, 757-769.

S7 a) M. Xie, J. Qin, Z. Hu and H. Zhao, *Chinese Chemical Letters*, 1992, **3**(10), 775-778; b) Q. Jun, X. Ming-Gui, H. Zi-Lun, Z. Hua-Ming and L. Shi-Kui, *Synthetic Communications*, 1992, **22**(15), 2253-2258.

S8 H. Ocak, B. Bilgin-Eran, M. Prehm, S. Schymura, Jan P. F. Lagerwall and C. Tschierske, *Soft Matter*, 2011, **7**, 8266-8280.

S9 C. Tschierske and H. Zaschke, J. Prakt. Chem., 1989, 331, 365-366.

S10 G. H. Mehl and J. W. Goodby, Chem. Ber., 1996, 129, 521 525.