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In the following we use square brackets to refer to equations from the main text of the

paper.

I. STABILITY DIAGRAM FOR DOUBLE DROPS.

In Fig. 1 we plot contour lines on the stability diagram corresponding to the condition

cos θj = const = c for various values of the constant c in the case of a double droplet (eq.

[3]). One can clearly distinguish the limiting cases mentioned in the main text:

(i) γi → γij and γj/γij → 0. In terms of c eq. [5] can be rewritten as

γj/γij =
1

c
(γi/γij − 1). (1)

In this limit different c correspond to straight lines on the stability diagram with

different slopes but all converging to a single point (γi/γij = 1, γj/γij = 0). For

j = A,B see Figs. 1a, 1b, respectively.

(ii) γij → γi and (γi − γj)/γij → 0. Eq. [6] can be rewritten in terms of c as

γj/γij = γi/γij − c. (2)

Accordingly, in this limit different c correspond to straight parallel lines with the same

slope equal to 1 but with different vertical shifts c.

Outside the limiting linear regions there is a transition region (approximately for γi/γij ∈
[0.2, 4]) in which the lines cos θj = const are not straight.

II. CALCULATION OF THE CURVATURE OF THE INTERNAL INTERFACE

OF PERFECT JANUS DROPS.

In the case of three-dimensional double Janus drops the line k∗(θB) separating the regions

of positive and negative curvatures R−1 in the (θB, k) plane (solid line in Fig. 2a) is given
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Figure 1: (a) Lines of constant cos θA = c (eq. [3]) for c = 1, 0.75, 0.5, 0.25, 0,−0.25,−0.5,−0.75,−1

(from top to bottom). (b) Lines of constant cos θB = c (the same values as in (a) but from bottom

to top). Note that in both cases in the limit of large γA and γB the lines are parallel and have

equal spacing due to the constant increment Δc = 0.25 between the neighboring lines.

by the following equation (analogical to eq. [10]):

k∗(θB) =
f0(θB)

1 − f0(θB)
. (3)

Figure 2: (a) Lines of zero curvature R−1(θB, k) = 0 (eqs. (3) and [10]) in the case of three- and

two-dimensional drops (solid and dashed lines, respectively). (b) Parametric plot of R−1(θB , k)

(eqs. (4) [11] and [9]) for fixed three different values of θB (the style of lines the same as in (a)).
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In analogy to eq. [11] we also have

k = k(θB, β) =
R3

Bf0(θB) + R3f0(θB − β)

R3
Bf0(θB) − R3f0(θB − β)

. (4)

Solving eqs. (4) and [9] with respect to R we obtain R−1 = R−1(θB, k), which is plotted for

several values of θB in Fig. 2b.

III. SPHERICAL CAP.

For the graphical definition of a spherical cap with an opening angle θ, see Figure 3.

Figure 3: A plane intersecting a spherical drop divides it into two spherical caps - one (marked in

grey) with an opening angle θ and the other with an opening angle π − θ.

IV. CALCULATION OF THE STABILITY DIAGRAMS FOR MULTIPLE JANUS

DROPS.

In the following we determine the shape of the liquid lenses forming a multiple Janus

drop, given the ratio of volumes k = VB/VA and the contact angles θA and θB under the

assumption that all the segments of the same phase are identical, i.e., that they form a

periodic chain (section of the shortest repeating unit is sketched in Figure 4).

First we determine the auxiliary angles βA and βB as functions of the radii RA and RB

and the contact angles. The following relation holds:

βA + βB + θA + θB = 2π. (5)

Additionally, from the law of sines for the triangle O1O2P (Fig. 4) we have

RA sin βA = RB sin βB, (6)

which together with eq. (5) after applying basic trigonometric identities yields

tan βi = − Rj sin(θA + θB)

Ri + Rj cos(θA + θB)
, (7)
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Figure 4: Sketch of the section of the repeating unit of the multiple drop with graphical definition

of the basic parameters.

Figure 5: The morphologic transition lines of a multiple drop for θ̄ = 1.15π calculated numerically

using Maple (solid lines) and Surface Evolver (dotted lines).

with i = A,B. The auxiliary angle β fulfills (see Figure 4)

β = θB + βB − π. (8)

The heights hi of the segments can be expressed as

hA/2 = RA cos βA − R
(
1 − cos β

)
, (9)

hB/2 = RB cos βB + R
(
1 − cos β

)
, (10)
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where R can be either positive or negative. The condition of the balance of Laplace pressures

yields the same result as for double Janus drops, i.e., (repeating eq. [8])

R =

(
sin θB

RA

− sin θA

RB

)−1

sin(θA + θB). (11)

Now βi, β and R are all functions of θA, θB, RA, RB. In order to change the independent

variables from the unknown radii Ri to the given volumes Vi one has to solve numerically

the set of equations

3VA/(4π) = R3
A(1 − 2f0(βA)) − 2R3f0(β), (12)

3VB/(4π) = R3
B(1 − 2f0(βB)) + 2R3f0(β) (13)

with respect to RA and RB, where f0(θ) = (2 + cos θ) sin2(θ/2). By choosing the length

scale such that VA = 1 and VB = k one thus obtains hi = hi(θA, θB, k), βi = βi(θA, θB, k)

and R = R(θA, θB, k). The conditions hi = 0 and βi = π/2 correspond to the limits of

stability beyond which the segments must either deform or coalesce. For example, for a

fixed value of θ̄ =: θA + θB the transition lines can be calculated in the (θB, k) plane by

solving numerically the set of equations hi(θ̄ − θB, θB, k) = 0 and βi(θ̄ − θB, θB, k) = π/2

for i = A,B. This yields four transition lines: k = k(hA)(θB), k = k(hB)(θB), k = k(βA)(θB)

and k = k(βB)(θB). Depending on the value of θ̄ ∈ [π, 2π] the lines k(hi) and k(βj), i �= j,

can either (i) intersect with each other (for θ̄ ∈ [π, θ̄∗], where θ̄∗ is a certain angle which

can be calculated numerically; we estimate θ̄∗ � 1.25π, see Fig. 4b in the main text) or (ii)

intersect with the line θj = π (for θ̄ ∈ [θ̄∗, 2π]). In the first case (i) the continuation of the

lines k(βi) beyond the intersection points corresponds to the transition from the metastable

to the unstable region. However, this continuation cannot be calculated within our model

with spherical interfaces. The deformed shapes of the segments in this case can be calculated

numerically by finite-element minimization of the interfacial energy using, e.g., the software

Surface Evolver (see the dotted line in Fig. 5).

We note that in Fig. 5 the lines k(hB) and k(βB) meet at the single point (θB = π/2, k = 0).

This property can be actually proved for arbitrary θ̄. Assume that we approach the line k(βB)

from the ’stable’ side, i.e., βB ↗π/2 and simultaneously we take the limit k = VB → 0 (we

set VA = 1). Then from eq. (13) in which the left hand side vanishes and from the fact that

f0(βB ↗π/2)↗ 1/2 we have R3f0(β) → 0, which together with f0(β) ∼ β4 implies β → 0.

Next, we use another geometric relation: sin β = |R|−1RB sin βB (see Fig. 4), from which it
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Figure 6: (a) Top-view of a schematic representation of the microfluidic device with two nested

T-junctions used for generation of double and multiple drops. Pressure sources (�), valves (�) and

inlets/outlets (◦) to the chip (with the chip marked by dotted line) are indicated. (b) Side-view of

the chip made of three layers of polycarbonate. The use of the middle layer enables positioning of

the inlet to the chamber at the mid-height of the chamber. (c) Side-view of the chip made of two

layers two layers of polycarbonate. In this case the chamber has the same depth as the channels.

follows that β ∼ |R|−1RB, which implies |R|−1RB → 0. Now, we need to check if in this limit

RB remains finite. From eqs. (5) and (6) we obtain RB = RA sin(θ̄1), where θ̄1 = 3π/2 − θ̄.

Next from eq. (12) with VA = 1 we finally get R3
B = 3 sin3(θ̄1)/[4π(1 − 2f0(θ̄1))], i.e., RB

remains finite. This implies |R|−1 → 0. Similarly, eq. (10) reduces to hB = Rβ2 ∼ |R|−1R2
B

which implies hB → 0. This altogether shows that the lines k(βB), k(hB) and the line R−1 = 0

approach each other in the limit k → 0. Finally, from eq. (8) it follows that in this limit we

also have θB → π/2. Analogous reasoning applies to the case k → ∞.

V. MICROFLUIDIC DEVICES

Schemes of the microfluidic devices are shown in Fig. 6.
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