ELECTRONIC SUPPLEMENTARY INFORMATION

Steady Shear Microstructure in Dilute Colloid-Polymer Mixtures

Bharath Rajaram and Ali Mohraz* Department of Chemical Engineering & Materials Science University of California, Irvine, Irvine, California, USA.

CALCULATION OF THE INTERPARTICLE POTENTIAL AT CONTACT

The interparticle depletion potential, $u_{dep}(r)$, between hard sphere colloids of radius *a* in the presence of non-adsorbing polymers for a net center-to-center separation, *r* is given by:

$$u_{dep}(r) = -\Pi \pi \left[\frac{4}{3} \left(a + R_g \right)^3 \left(1 - \frac{3r}{4 \left(a + R_g \right)} + \frac{r^3}{16 \left(a + R_g \right)^3} \right) \right], \ ^{1-2}$$

where Π represents the osmotic pressure induced by the polymer and R_g is the polymer's radius of gyration. The osmotic pressure is modeled through a virial equation of state according to:

$$\Pi = nkT(1+B_2n+\ldots),^3$$

where *n* is the polymer bulk number density, *k* is the Boltzmann's constant and *T* is the absolute temperature and B_2 is the second virial coefficient, related to the depletant volume (V_p):

$$B_2 = 4V_p = \frac{16}{3} \left(\pi R_g^{3} \right)$$

The magnitude of the interparticle electrostatic repulsion, $u_{elec}(r)$ was estimated by inverting the 2D radial distribution function of a polymer-free suspension, g(r), using the hypernetted chain (HNC) approximation as described in reference [4]

$$u_{elec}(r) = w(r) + nkTI(r)$$

where *n* is the areal number density of particles, w(r) is the mean potential:

$$w(r) = -kT\ln g(r)$$

and I(r) represents the convolution integral:

$$I(r) = \int \left[g(r') - 1 - nI(r) \right] \left[g(|r'-r|) - 1 \right] d^2r'$$

The magnitude of the interparticle potential at contact, $|U_{min}|$, was estimated by extrapolating $U(r) = u_{dep}(r) + u_{elec}(r)$ to the particle diameter.

$\begin{array}{c} \text{PS conc.} (C_p, \\ \text{mg/ml}) \rightarrow \\ \hline \dot{\gamma}, \text{ s}^{-1} \end{array}$	9.0	14.4	20.8
0.07	3.76E-03	1.50E-03	7.59E-04
0.14	7.53E-03	3.00E-03	1.52E-03
0.56	3.01E-02	1.20E-02	6.07E-03
2.24	1.20E-01	4.79E-02	2.43E-02
8.96	4.82E-01	1.92E-01	9.72E-02

SUPPLEMENTARY TABLES & FIGURES

Table S1. Calculated values of the dimensionless shear rate, $\dot{\gamma}^*$, for PS Mw = 97,400 Da over the range of $\dot{\gamma}$ and C_p investigated.

$\frac{\text{PS conc. } (C_p, \\ \text{mg/ml}) \rightarrow}{\dot{\gamma}, \text{ s}^{-1}}$	4.5	7.2	10.4
0.07	7.88E-03	2.55E-03	1.20E-03
0.14	1.58E-02	5.10E-03	2.41E-03
0.56	6.31E-02	2.04E-02	9.63E-03
2.24	2.52E-01	8.16E-02	3.85E-02
8.96	1.01E+00	3.26E-01	1.54E-01

Table S2. Calculated values of the dimensionless shear rate, $\dot{\gamma}^*$, for PS Mw = 777,500 Da over the range of $\dot{\gamma}$ and C_p investigated.

Figure S1. Low magnification confocal micrographs of the terminal microstructure in the flow-vorticity plane at shear rate, $\dot{\gamma} =$ (a) 0.14, (b) 0.56 and (c) 2.24 s⁻¹. Scale bar corresponds to 300 μ m.

Figure S2. Overview of terminal cluster radius (R_c) quantification: (a) Raw image, (b) processed image after morphing and dilation operations, (c) identification of clusters and (d) overlay of identified clusters. Scale bar represents 20 μ m.

Figure S3. Long-range reconstruction of the sheared microstructure at: (a) $C_p = 20.8 \text{ mg/ml}$, $M_w = 97,400 \text{ Da}$, (b) $C_p = 10.4 \text{ mg/ml}$, $M_w = 777,500 \text{ Da}$. $\dot{\gamma}$ (from top to bottom) = 0.07, 0.14, 0.56, 2.24, 8.96 s⁻¹. Scale bar represents 100 µm.

Figure S4. Probability distributions of: (a-c) nearest neighbors (P(NN)) and, (d-f) volumes of Voronoi polyhedra (P(V_{VP})) at three representative polymer concentrations. The symbols reported in the legend are common to all the plots.

REFERENCES

- 1. S. Asakura and F. Oosawa, *Journal of Polymer Science*, 1958, **33**, 183-192.
- 2. W. B. Russel, D. A. Saville and W. R. Schowalter, *Colloidal Dispersions*, Cambridge University Press, 1992.
- 3. A. Vrij, Pure Appl Chem, 1976, 48, 471-483.
- 4. S. H. Behrens and D. G. Grier, *Phys. Rev. E*, 2001, **64**, Art. No. 050401.