Electronic Supplementary Material (ESI) for Soft Matter This journal is O The Royal Society of Chemistry 2012

This	journal is © The Royal Society of Chemistry 2012
1	Supporting Information
2	Magnetic emulsions with responsive surfactants
3	Paul Brown [†] , Craig P. Butts [†] , Jing Cheng [§] , Julian Eastoe ^{*,†} , Christopher A. Russell [†] , Gregory N. Smith [†]
4	[†] School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K., [§] Key Laboratory of
5	Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal
6	University, Wuhan 430079, China,
7 8	MagSurf Synthesis
9	Dodecyltrimethylammonium bromide (99%, DTAB), iron (III) trichloride and gadolinium (III) chloride
10	hexahydrate were purchased from Sigma Aldrich and used without further purification. n-Dodecane (<99%)
11	was purchased from Fluka and purified using fuming sulfuric acid to reach surface chemical purity
12	(Supporting Information). Dodecyltrimethylammonium trichloro-monobromoferrate (DTAF) was
13	synthesized by mixing equimolar amounts of DTAB with iron trichloride in methanol and stirring overnight
14	at room temperature. The solvent was then removed and the product dried at reduced pressure at 80 $^\circ C$
15	overnight to yield a viscous brown liquid. Dodecyltrimethylammonium trichloromonobromogadolinate
16	DTAG) was synthesized using a similar procedure, yielding a white solid. MagSurfs were characterized by

elemental analysis (Table S1), differential scanning calorimetry (DSC), and UV-Vis spectroscopy (Figure S1).

19 Elemental analysis

20 Elemental analyses show that all the compounds contain the expected compositions.

Compound	С	Η	Ν
DTAG	31.45 (31.51)	6.39 (5.95)	2.73 (2.45)
DTAF	38.29 (38.31)	7.22 (7.23)	2.98 (2.97)

21

Table S1 .Elemental analyses, experimental and theoretical (brackets) as % wt.

23

22

24 UV- Visible Spectroscopy

UV-vis absorption spectra of 0.10 M MagSurf acetonitrile solutions were recorded on a Nicolet Eco 300
machine (500 – 900 nm). The spectrum for DTAF shows three bands characteristic of the [FeCl₃Br]⁻ ion,
similar to those for the [FeBr4]⁻ ion, in agreement with previous literature.¹ There is no absorption in the
UV-vis range for GdCl₃ or the [GdCl₃Br]⁻ ion.

Figure S1. Visible spectra of FeCl₃ (starting material) and the MagSurf DTAF at a concentration of 0.10 M in
 acetonitrile.

33

30

34 Polarizing Light Microscopy (PLM)

A Nikon Optiphot-2 microscope fitted with polarizing filters and a Linkam heating/cooling stage was used. 35 Images were captured on a PC via a video camera and colour processor connected to the microscope. The 36 liquid crystal progression of each surfactant was investigated by the solvent penetration method (i.e. phase 37 cut). A small amount of surfactant was placed on a microscope slide under a cover-slip. The mounted slide 38 was heated until the sample was fluid and optically isotropic. After slow cooling (1.0 °C min⁻¹) to 25 °C, a 39 40 drop of water was added to the edge of the cover-slip. As the water penetrated the surfactant, a concentration gradient was established, from water at one side (bottom left Figure S2) to pure surfactant at the other, 41 enabling a range of mesophases to be observed in the field of view. 42

- 43
- 44 **Figure S2**. PLM textures showing mesophase formation of surfactants on addition of water at 25 °C.

45 Electrical Conductivity Measurements

Electrical conductivities, κ , were determined using a Jenway Model 4510 Conductivity/TDS conductivity meter with temperature controlled at 25 °C ± 0.1 (thermostatic water bath). Critical micelle concentrations (cmcs) were determined as normal, from the break points between the high (low concentration) and lower branches of behaviour. Surfactant ionic dissociation constants (β), were estimated using the ratio of the slopes method.²

- 51
- 52

Electronic Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2012

Compound	${ m M}_{ m w}$ /	Mp/	cmc /	β
	(g mol ⁻¹)	°C	$(mM) \pm 0.005$	
DTAG	571.85	-	11.9	0.59
DTAF	470.55	32	13.6 (13.6)	0.81
DTAB	308.35	246	15.5 (14.5)	0.26 (0.25)

53

54

 Table S2. Selected physical properties of surfactants studied.

55

56 Surface Tensiometry Method

Surface tensions between aqueous surfactant solutions and air were performed at 25 ± 1 °C (Figure S3), 57 using a Krüss Drop Shape Analysis DSA1 apparatus. This instrument obtains spatial coordinates of a drop 58 edge (shape and size), which are used to calculate surface tension³. Prior to use, the capillary needle 59 (diameter, 1.834 mm) and syringe were rinsed with copious amounts of pure water. Before being mounted 60 on the dosing dispenser, the syringe was rinsed a few times with the surfactant solution to be measured. An 61 62 aqueous drop was manually formed at the tip of the capillary. Measurements were acquired until steady values of surface tension were reached. Calibration used the surface tension of pure water (Elga, 18 M Ω cm⁻ 63 ¹).⁴ 64

Measurements of MagSurf aqueous solutions at 0.20 M were taken on the same drop with and without a magnet: NdFeB (N42, 20 mm x 10 mm magnetic field density of 0.44 T on the surface and a gradient of about 36 mT mm⁻²) and was held in position at an approximate distance of 1 mm from the bottom of the drop surface.

69 Unpaired electrons in transition metal salts such as FeCl₃, GdCl₃ and MagSurfs interact weakly with a 70 magnetic field⁵ and so a reduction in apparent surface tension should be expected, as the downward 71 magnetic attraction augments gravity. It has also been reported that γ for pure water is affected by a 72 magnetic field due to the development of hydrogen bonding and a weakening of van der Waals forces⁶ so 73 the slight increase in γ seen for water was expected.

Figure S3. Pendant drop profiles of the surfactants studied with and without a magnet. Units of surface tension are mN m⁻¹.

77

74

75

76

78 Emulsion preparation and characterization.

Emulsions were prepared with surface chemically pure n-dodecane, a commercial base oil chosen to 79 represent the chief constituent of engine lube oil⁷, pure water and also a set of emulsions were made with 80 brine. For this 20 wt% aqueous (or brine) solutions of the appropriate surfactant were used to make up 10.5 81 wt% Triton-X100 (Sigma Aldrich) solutions. These mixed surfactant/MagSurf+Triton-X100 solutions were 82 vortexed for 5 minutes, before either base oil (Exxonmobil core 150) or pure n-dodecane was added (7.8 83 84 wt% with respect to the final emulsion). The resulting emulsions were voretxed for a further 10 minutes and then sonicated (MSE Soniprep 150 (UK), 23 kHz) five times, each time at full power for four minutes with 85 30 seconds cooling time between successive sonication. The visual appearances of the water, oil, oil + water 86 bi-phasic system, and the resulting MagSurf emulsions are shown in Figure S5 (Supporting Information). 87

88

The emulsion droplet sizes were determined using a Brookhaven Instruments Zeta-PALS Dynamic Light Scattering (DLS) apparatus (Brookhaven Instruments Corporation, Holtsville, NY) with the detector set at 90°. Measurements were taken of the neat emulsions, and then at a series of dilutions with pure water or brine as appropriate. At high concentrations DLS is sensitive to interparticle interactions, in the region of 10 vol% dilution with solvent (water or brine) the DLS particle sizes stabilized to limiting values (Table S3 and S4, Supporting Information).

Electronic Supplementary Material (ESI) for Soft Matter This journal is O The Royal Society of Chemistry 2012

96 Sizing for neat mixed micellar solutions not containing oil were also carried out. However, very weak 97 scattered intensities owing to the small sizes (~2 nm) gave rise to unreliable analyses of the correlation 98 functions.

99

100 Dodecane Purification

101

102 n-Dodecane (Fluka >99%), is known to contain surface-active impurities⁸. Prior to making emulsions, 103 dodecane was purified by washing with fuming sulfuric acid, then neutralising with 10 wt% sodium 104 bicarbonate (aq.). Further washing was done with pure water and the dodecane was dried with calcium 105 chloride. The dodecane was then fractioned under reduced pressure with the middle fraction of the distillate 106 collected for experiments.⁹ The cleaned dodecane was assessed for surface chemical purity by interfacial 107 tension $\gamma_{0/w}$ measurements as a function of surface age (protocol outlined below): good agreement of $\gamma_{0/w}$ 108 compared with literature⁸ was found.

109

110 111

Figure S4. Interfacial tensions as a function of surface age determined by drop shape analysis (see below)
 for dodecane-water interfaces at 25 °C: red-dashed lower curve, as received dodecane; blue upper curve
 purified dodecane.

To assess the purity of dodecane, interfacial tensions between pure water and either purified or "as purchased" dodecane were performed at 25 ± 1 °C, using a Krüss Drop Shape Analysis DSA1 apparatus. A drop of water was formed at the tip of the capillary, then submerged in a cuvette containing dodecane. Measurements were acquired every 5 minutes for 60 minutes using the automatic fitting function on the DSA1 software. Electronic Supplementary Material (ESI) for Soft Matter This journal is O The Royal Society of Chemistry 2012

Emulsion preparation and characterization.

Figure S5. Oil and brine do not mix.

However on adding a surfactant and sonicating, oil in brine (o/b) emulsions form.

Compound	Density / g cm ⁻³	Volume fraction (ϕ)
DTAB / DTAF / DTAG	1.40	0.123
TritonX-100	1.07	0.094
Base oil	0.87^{*}	0.093
dodecane	0.75	0.104
water	1.00	0.690

Table S3. Parameters for emulsion characterization. *At 15 °C.

Compound	MagSurf	100 vol%	50 vol%	25 vol%	10 vol%	5 vol%	1 vol%
	φ						
DTAG	0.123	21707	159	138	150	154	159
DTAF	0.123	10817	222	172	158	158	136
DTAB	0.123	1308	175	176	220	239	240

Table S4. Apparent emulsion size (nm) for emulsions of lube oil in water as a function of concentration determined by DLS: vol% represents the final volume % of emulsion diluted in water.

Electronic Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2012

Compound	MagSurf	100 vol%	50 vol%	25 vol%	10 vol%	5 vol%	1 vol%
	φ						
DTAG	0.123	773	93	99	212	232	260
DTAF	0.123	1722	118	75	187	207	209
DTAB	0.123	1307	250	198	184	166	164

137

Table S5. Apparent emulsion size (nm) for emulsions of dodecane in brine as a function of concentration by
 DLS: vol% represents the final volume % of emulsion diluted in brine.

140 Zeta potentials of emulsions

141 As expected for emulsions stabilized by cationic surfactants, the zeta potentials of the studied emulsions

were all determined as positive, between +20 and +35 mV, hence explaining the observed stabilities.

143 Effect of a magnetic field on emulsions

Magnified images of Figure 2 (right) in the main paper, showing the effect of a 1T magnet on the magnetic emulsions.

146

Figure S6: DTAF (left) and DTAG (right) containing emulsions (magnetic surfactant $\phi = 0.123$) attracted to a magnetic field (max = 1 T)

149 Magnets

The magnets used for Figure 2 in the main paper was a NdFeB (20 mm x 10 mm) with a field density of 0.44 T on the surface, and a gradient of about 36 mT mm⁻². And a NdFeB rod magnet (25mm diameter x 50mm) with a maximum field density of ~ 1.0 T, varying along the length. Both magnets were purchased from e-magnets (UK). Electronic Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2012

154

155 Video - link

Figure 2: The interfacial tension of DTAF and DTAG lube oil emulsions (magnetic surfactant $\phi = 0.123$)

and dodecane could also be overcome using a magnet. For comparison the system on the left is the non-

158 magnetic DTAB (surfactant $\phi = 0.123$).

159

160 Figure 3: The control of a DTAG oil in water emulsion droplet in dodecane.

161

162 **References**

(a) P. Brown, A. Bushmelev, C.P. Butts, J. Cheng, J. Eastoe, I. Grillo, R.K. Heenan, A.M. Schmidt, *Angew. Chem. Int. Ed.*, 2012, 51, 2414-2416. (b) M. Dobbelin, V. Jovanovski, I. Llarena, L.J. Claros Marfil, G. Cabanero, J. Rodriguez,
 D. Mecerreyes, *Polym. Chem.*, 2011, 2, 1275-1278.

166 2. J.R. Rodríguez, A. González-Pérez, J.L. Del Castillo, J. Czapkiewicz, J. Coll. Int. Sci., 2002, 250, 438-443.

167 3. (a) D.Y. Kwok, A.W. Neumann, *Adv. Coll. Int. Sci.*, **1999**, *81*, 167-249; (b) EasyDrop Contact Angle Measuring 168 Systems: Two of an easy kind. In *Technical Information*, Krüss, Ed. Krüss: Hamburg, 2010.

169 4. N.R. Pallas, Y. Harrison, *Coll. Surf.*, **1990**, *43*, 169-194.

170 5. B.M. Krieger, H.Y. Lee, T.J. Emge, J.F. Wishart, J.E.W. Castner, *Phys. Chem. Chem. Phys.*, **2010**, *12*, 8919-8925.

(a) R. Cai, H. Yang, J. He, W. Zhu, *J. Molec. Struc.*, **2009**, *938*, 15-19; (b) L. Holysz, A. Szczes, E. Chibowski, *J. Coll. Int. Sci.*, **2007**, *316*, 996-1002; (c) H. Inaba, T. Saitou, K. Tozaki, H. Hayashi, AIP, **2004**, 96, 6127-6132.

173 7. G. Corsico, L. Mattei, A. Roselli, C. Gommellini, *Poly(internal olefins) - Synthetic and high-performance* 174 *functional fluids*, Marcel Dekker, **1999**.

175 8. G.R. Bernett, R. Atkin, S. Hicks, J. Eastoe, *Langmuir*, **2004**, *20*, 5673 - 5678.

176 9. M.G. Steinmetz, C. Yu, Organometallics, **1992**, *11*, 2686-2690.

177