Mesomorphic and Ion Conducting Properties of Dialkyl(1,4-phenylene)diimidazolium Salts

Nadim Noujeim, Salim Samsam, Ludovic Eberlin, Samantha H. Sanon, Dominic Rochefort and Andreea R. Schmitzer*

Department of Chemistry, Université de Montréal, C.P. 6128 Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada

Supporting Information:

¹ H and ¹³ C NMR of compound 2a	2
¹ H and ¹³ C NMR of compound 2b	3
¹ H and ¹³ C NMR of compound 3a	4
¹ H and ¹³ C NMR of compound 3b	5
DSC of compounds 2a and 2b	6
DSC of compounds 3a and 3b	7
TGA of compounds 2a and 2b	8
TGA of compounds 3a and 3b	9
Crystallographic data of compound 2a	10
Crystallographic data of compound 3a	18

DSC of compound **2a:** (first and second cycles (heating+cooling) identical) p-DiimC12-TfO

DSC of compound **2b**: (first and second cycles identical)

p-DiimC12-NTf₂

p-DiimC16-NTf2

The first heating shows a phase transition at 60 °C that isn't present in the subsequent heating cycles. This is due to the crystallization of compound 3b in different crystalline phases upon synthesis or upon cooling from the Smectic phase.

TGA of compound 2a:

Crystallographic data for compound 2a.

CRYSTAL AND MOLECULAR STRUCTURE OF

C38 H60 F6 N4 O6 S2 COMPOUND 2a

Structure solved and refined in the laboratory of X-ray diffraction Université de Montréal by Nadim Noujeim.

Table 1. Crystal data and structure refinement for C38 H60 F6 N4 O6 S2.

Identification code	NADIM2
Empirical formula	C38 H60 F6 N4 O6 S2
Formula weight	847.02
Temperature	150K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = $8.4599(2)$ Å $\alpha = 81.9423(11)^{\circ}$ b = $8.5465(2)$ Å $\beta = 76.9685(11)^{\circ}$ c = $16.5655(4)$ Å $\gamma = 72.9996(10)^{\circ}$
Volume	1112.34(5)Å ³
Ζ	1
Density (calculated)	1.264 g/cm ³
Absorption coefficient	1.699 mm^{-1}
F(000)	450
Crystal size	0.26 x 0.24 x 0.07 mm
Theta range for data collection	2.75 to 72.55°
Index ranges	$-10 \le h \le 10$, $-9 \le k \le 10$, $-20 \le \ell \le 20$
Reflections collected	29749
Independent reflections	4288 [R _{int} = 0.038]
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8879 and 0.7721
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4288 / 0 / 255
Goodness-of-fit on F^2	1.031
Final R indices [I>2sigma(I)]	$R_1 = 0.0430$, $wR_2 = 0.1151$
R indices (all data)	$R_1 = 0.0443$, $wR_2 = 0.1163$
Extinction coefficient	0.0125(9)

Largest diff. peak and hole $$0.324$ and -0.419 e/{\mbox{\AA}^3}$$

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å 2 x 10^3) for C38 H60 F6 N4 O6 S2.

 ${\rm U}_{\rm eq}$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	Ueq
N(1)	6925 (2)	8841(1)	1195(1)	29(1)
C(2)	5837(2)	8320(2)	912(1)	28(1)
N(3)	6476(1)	6715(1)	810(1)	27(1)
C(4)	8038(2)	6200(2)	1039(1)	30(1)
C(5)	8316(2)	7532(2)	1281(1)	32(1)
C(6)	5720(2)	5812(2)	409(1)	26(1)
C(7)	3977(2)	6209(2)	519(1)	28(1)
C(8)	6754(2)	4611(2)	-104(1)	29(1)
C(9)	6700(2)	10589(2)	1298(1)	33(1)
C(10)	6250(2)	10999(2)	2196(1)	32(1)
C(11)	5713(2)	12866(2)	2219(1)	32(1)
C(12)	5193(2)	13466(2)	3087(1)	38(1)
C(13)	4650(2)	15335(2)	3073(1)	39(1)
C(14)	4159(2)	15973(2)	3933(1)	43(1)
C(15)	3536(2)	17839(2)	3919(1)	43(1)
C(16)	3083(2)	18481(2)	4779(1)	44(1)
C(17)	2401(3)	20341(2)	4765(1)	45(1)
C(18)	1966(3)	21008(2)	5615(1)	47(1)
C(19)	1259(3)	22857(2)	5591(1)	61(1)
C(20)	829(4)	23524(3)	6443(2)	81(1)
S(25)	1170(1)	1240(1)	1238(1)	31(1)
0(26)	-149(1)	2366(1)	863(1)	39(1)
0(27)	2853(1)	1251(1)	810(1)	45(1)
0(28)	944(2)	-367(1)	1507(1)	48(1)
C(21)	971(2)	2154(2)	2201(1)	41(1)
F(22)	2133(2)	1295(2)	2631(1)	67(1)
F(23)	-527(2)	2258(2)	2688(1)	67(1)
F(24)	1159(2)	3674(1)	2036(1)	61(1)

Х	У	Z	Ueq
4779	8976	801	34
8773	5120	1028	36
9282	7561	1474	39
3291	7034	874	34
7945	4354	-171	34
5799	11270	1007	39
7756	10883	1029	39
7236	10516	2465	39
5319	10536	2501	39
6660	13302	1909	39
4757	13325	1927	39
6151	13031	3380	45
4250	13031	3403	45
5586	15767	2744	47
3679	15764	2789	47
5147	15590	4206	52
3261	15498	4272	52
2531	18219	3658	52
4423	18314	3569	52
2226	17974	5135	53
4099	18137	5031	53
3252	20845	4400	54
1378	20680	4518	54
1130	20493	5984	56
2994	20692	5857	56
228	23174	5351	74
2093	23374	5220	74
-30	23053	6808	121
396	24722	6385	121
1845	23225	6684	121
	x 4779 8773 9282 3291 7945 5799 7756 7236 5319 6660 4757 6151 4250 5586 3679 5147 3261 2531 4423 2226 4099 3252 1378 1130 2994 228 2093 -30 396 1845	XY47798976877351209282756132917034794543545799112707756108837236105165319105366660133024757132561511303142501303155861576736791576451471559032611549825311821944231831422261797440991813732522084513782068011302049329942069222823174209323374-302305339624722184523225	xyz477989768018773512010289282756114743291703487479454354-1715799112701007775610883102972361051624655319105362501666013302190947571332519276151130313403558615767274436791576427895147155904206326115498427225311821936584423183143569222617974513540991813750313252208454400137820680451811302049359842942069258572282317453512093233745220-302305368083962472263851845232256684

Table 3. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2 x 10^3) for C38 H60 F6 N4 O6 S2.

Table 4. Anisotropic parameters (Å 2 x 10 $^3)$ for C38 H60 F6 N4 O6 S2. The anisotropic displacement factor exponent takes the form:

	U11	U22	U33	U23	U13	U12
N(1)	37(1)	22(1)	30(1)	-4(1)	-9(1)	-7(1)
C(2)	35(1)	20(1)	30(1)	-4(1)	-9(1)	-5(1)
N(3)	31(1)	20(1)	28(1)	-3(1)	-8(1)	-5(1)
C(4)	32(1)	25(1)	34(1)	-3(1)	-9(1)	-4(1)
C(5)	34(1)	28(1)	36(1)	-3(1)	-11(1)	-7(1)
C(6)	34(1)	18(1)	26(1)	-1(1)	-9(1)	-6(1)
C(7)	33(1)	21(1)	29(1)	-6(1)	-5(1)	-3(1)
C(8)	29(1)	24(1)	32(1)	-3(1)	-7(1)	-4(1)
C(9)	46(1)	20(1)	34(1)	-3(1)	-11(1)	-11(1)
C(10)	41(1)	23(1)	32(1)	-4(1)	-7(1)	-7(1)
C(11)	40(1)	23(1)	33(1)	-3(1)	-5(1)	-7(1)
C(12)	51(1)	25(1)	32(1)	-5(1)	-1(1)	-8(1)
C(13)	54(1)	26(1)	33(1)	-5(1)	-2(1)	-8(1)
C(14)	63(1)	27(1)	33(1)	-5(1)	1(1)	-8(1)
C(15)	65(1)	27(1)	32(1)	-6(1)	-2(1)	-9(1)
C(16)	66(1)	29(1)	32(1)	-6(1)	-2(1)	-10(1)
C(17)	69(1)	30(1)	33(1)	-7(1)	-3(1)	-11(1)
C(18)	66(1)	37(1)	35(1)	-11(1)	-2(1)	-13(1)
C(19)	90(2)	39(1)	51(1)	-19(1)	-5(1)	-11(1)
C(20)	108(2)	63(2)	69(2)	-41(1)	-4(1)	-15(1)
S(25)	33(1)	22(1)	34(1)	-3(1)	-5(1)	-1(1)
0(26)	43(1)	31(1)	41(1)	-5(1)	-16(1)	2(1)
0(27)	37(1)	38(1)	48(1)	0(1)	3(1)	-1(1)
0(28)	56(1)	26(1)	62(1)	1(1)	-13(1)	-12(1)
C(21)	37(1)	47(1)	38(1)	-4(1)	-10(1)	-9(1)
F(22)	64(1)	84(1)	54(1)	5(1)	-34(1)	-13(1)
F(23)	51(1)	106(1)	45(1)	-28(1)	6(1)	-24(1)
F(24)	75(1)	46(1)	70(1)	-20(1)	-19(1)	-18(1)

-2 π^2 [h^2 a*² U₁₁ + ... + 2 h k a* b* U₁₂]

N(1)-C(2)	1.3255(18)	C(2)-N(3)-C(4)	108.49(11)
N(1) - C(5)	1.3844(18)	C(2)-N(3)-C(6)	123.02(11)
N(1)-C(9)	1.4791(17)	C(4)-N(3)-C(6)	127.88(11)
C(2)-N(3)	1.3384(17)	C(5)-C(4)-N(3)	106.87(12)
N(3)-C(4)	1.3861(17)	C(4)-C(5)-N(1)	107.05(12)
N(3)-C(6)	1.4384(17)	C(7)-C(6)-C(8)	121.65(13)
C(4)-C(5)	1.357(2)	C(7)-C(6)-N(3)	119.18(12)
C(6)-C(7)	1.3883(19)	C(8)-C(6)-N(3)	119.11(12)
C(6)-C(8)	1.3883(19)	C(8)#1-C(7)-C(6)	119.31(13)
C(7)-C(8)#1	1.3879(19)	C(7)#1-C(8)-C(6)	119.03(13)
C(8)-C(7)#1	1.3879(19)	N(1)-C(9)-C(10)	113.82(11)
C(9)-C(10)	1.515(2)	C(9)-C(10)-C(11)	108.73(11)
C(10)-C(11)	1.5296(19)	C(12)-C(11)-C(10)	114.75(12)
C(11)-C(12)	1.521(2)	C(11)-C(12)-C(13)	112.47(12)
C(12)-C(13)	1.526(2)	C(14)-C(13)-C(12)	113.66(12)
C(13)-C(14)	1.522(2)	C(13)-C(14)-C(15)	113.53(13)
C(14)-C(15)	1.525(2)	C(14)-C(15)-C(16)	113.58(13)
C(15)-C(16)	1.525(2)	C(17)-C(16)-C(15)	113.41(13)
C(16)-C(17)	1.523(2)	C(18)-C(17)-C(16)	114.23(14)
C(17)-C(18)	1.520(2)	C(19)-C(18)-C(17)	113.51(15)
C(18)-C(19)	1.516(3)	C(18)-C(19)-C(20)	113.42(19)
C(19)-C(20)	1.524(3)	O(28)-S(25)-O(26)	115.61(7)
S(25)-O(28)	1.4378(11)	O(28)-S(25)-O(27)	114.60(7)
S(25)-O(26)	1.4403(10)	O(26)−S(25)−O(27)	114.45(7)
S(25)-O(27)	1.4418(12)	O(28)-S(25)-C(21)	104.36(8)
S(25)-C(21)	1.8260(17)	O(26)-S(25)-C(21)	102.84(7)
C(21)-F(23)	1.325(2)	O(27)-S(25)-C(21)	102.63(8)
C(21)-F(22)	1.3264(19)	F(23)-C(21)-F(22)	107.82(14)
C(21)-F(24)	1.337(2)	F(23)-C(21)-F(24)	107.50(15)
		F(22)-C(21)-F(24)	107.41(14)
C(2)-N(1)-C(5)	108.87(11)	F(23)-C(21)-S(25)	111.75(11)
C(2)-N(1)-C(9)	123.09(12)	F(22)-C(21)-S(25)	111.74(12)
C(5)-N(1)-C(9)	127.71(12)	F(24)-C(21)-S(25)	110.42(11)
N(1)-C(2)-N(3)	108.72(12)		

Table 5. Bond lengths [Å] and angles [°] for C38 H60 F6 N4 O6 S2

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z

C(5) - N(1) - C(2) - N(3)	-0.15(16)
C(9) - N(1) - C(2) - N(3)	173.66(12)
N(1) - C(2) - N(3) - C(4)	0.03(15)
N(1) - C(2) - N(3) - C(6)	-171.60(12)
C(2) - N(3) - C(4) - C(5)	0.10(16)
C(6) = N(3) = C(4) = C(5)	171.21(13)
N(3) - C(4) - C(5) - N(1)	-0.19(16)
C(2) = N(1) = C(5) = C(4)	0.22(16)
C(2) = N(1) - C(5) - C(4)	-173 23(13)
C(2) = N(3) = C(6) = C(7)	-35 55(19)
C(2) = N(3) - C(6) - C(7)	154, 52(13)
C(4) = N(3) = C(6) = C(7)	$1 4 \cdot 52 (15)$ $1 4 1 \cdot 83 (13)$
C(2) = N(3) = C(0) = C(0)	-28 + 1(2)
C(4) = N(3) = C(0) = C(0)	-20.1(2)
V(3) = C(6) = C(7) = C(8) #1	-0.1(2) 177 18(11)
(3) = C(0) = C(7) = C(0) # 1	$1 (1) \cdot 10 (11)$
C(7) = C(8) = C(8) = C(7) # 1	0.1(2)
N(3) = C(0) = C(0) = C(7) # 1	-1/7.19(11)
C(2) = N(1) = C(3) = C(10)	100.34(13)
C(3) = N(1) = C(3) = C(10)	-78.87(18)
M(T) = C(3) = C(T0) = C(TT)	-100.33(12)
C(9) = C(10) = C(11) = C(12)	179 02/13)
C(10) = C(11) = C(12) C(10) = C(11) = C(12)	$\pm 13.02(\pm 3)$
C(11) = C(12) = C(12) = C(13)	-170 72(17)
C(12) = C(12) = C(13) = C(14)	-177 22/15)
C(12) - C(13) - C(14) - C(15)	-1/1.23(13)
C(13) - C(14) - C(15) - C(16)	-1/8.63(15)
C(14) - C(15) - C(16) - C(17)	-1/.89(10)
C(15) - C(16) - C(17) - C(18)	-1/9.14(10)
C(16) - C(17) - C(18) - C(19)	-1/8.89(18)
C(17) - C(18) - C(19) - C(20)	-1/9.8(2)
U(28) - S(25) - C(21) - F(23)	-60.38(14)
∪(26) −S(25) −C(21) −F(23)	60.68(14)
O(27) - S(25) - C(21) - F(23)	179.76(12)
O(28) - S(25) - C(21) - F(22)	60.53(14)
O(26) -S(25) -C(21) -F(22)	-178.40(12)
O(27)-S(25)-C(21)-F(22)	-59.32(13)
O(28)-S(25)-C(21)-F(24)	-179.98(11)
O(26)-S(25)-C(21)-F(24)	-58.92(13)
O(27)-S(25)-C(21)-F(24)	60.17(12)

Table 6. Torsion angles [°] for C38 H60 F6 N4 O6 S2.

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z

bonding for C	38 H60 F6 N4	06 S2.			
D-H	A	d(D-H)	d(HA)	d(DA)	<dha< th=""></dha<>
C(2)-H(2)	0(27)#2	0.95	2.14	3.0094(18)	151.5

Table 7. Bond lengths $[{\rm \AA}]$ and angles $[\,{}^{\circ}]$ related to the hydrogen

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z #2 x,y+1,z

Crystallographic data for compound 3a.

CRYSTAL AND MOLECULAR STRUCTURE OF

C40 H60 F2 N6 O8 S4 COMPOUND (SCHM48)

Equipe Schmitzer

Département de chimie, Université de Montréal,

C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7 (Canada)

Structure solved and refined in the laboratory of X-ray diffraction Université de Montréal by Michel Simard.

Table 1. Crystal data and structure refinement for C40 H60 F² N6 O8 S4. Identification code SCHM48 Empirical formula C40 H60 F12 N6 O8 S4 Formula weight 1109.18 200K Temperature Wavelength 1.54178 Å Crystal system Triclinic Space group P-1 Unit cell dimensions a = 5.8927(2) Å $\alpha = 80.782(1)^{\circ}$ $\beta = 85.616(1)^{\circ}$ b = 8.7710(2) Åc = 25.3158(7) Å $\gamma = 79.496(1)^{\circ}$ 1268.40(6)Å³ Volume Ζ 1 1.452 g/cm^3 Density (calculated) 2.599 mm^{-1} Absorption coefficient F(000) 578 Crystal size 0.15 x 0.15 x 0.11 mm Theta range for data collection 1.77 to 72.56° $-7 \le h \le 7$, $-10 \le k \le 10$, $-31 \le \ell \le 31$ Index ranges Reflections collected 32251 Independent reflections $4869 [R_{int} = 0.036]$ Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7513 and 0.5553 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 4869 / 118 / 428 Goodness-of-fit on F^2 1.056 Final R indices [I>2sigma(I)] $R_1 = 0.0374$, $wR_2 = 0.1054$ R indices (all data) $R_1 = 0.0387$, $wR_2 = 0.1067$ Extinction coefficient 0.0077(5)

Largest diff. peak and hole $$0.293$ and -0.395 e/Å^3$$

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å 2 x 10^3) for C40 H60 F12 N6 08 S4.

 ${\tt U}_{\mbox{\scriptsize eq}}$ is defined as one third of the trace of the orthogonalized Uij tensor.

	Occ.	x	У	Z	Ueq
N(1)	1	7930(2)	4496(1)	5858(1)	31(1)
C(2)	1	7780(2)	3466(2)	6305(1)	35(1)
N(3)	1	9449(2)	3551(1)	6620(1)	39(1)
C(4)	1	10701(3)	4659(2)	6367(1)	44(1)
C(5)	1	9764 (3)	5257(2)	5892(1)	40(1)
C(6)	1	6434(2)	4/52(2)	5418(1)	28(1)
C(7)	1	5759(2)	34/8(2)	5253(1)	31(1)
C(8)		5697(2)	6276(2)	51/1(1)	30(1)
C(9)	0.625(6	(13)	2655(11)	7133(3)	42(1) 42(2)
C(10)	0.625(8	(10) 7900(10)	2390(9)	7462(3)	43(Z) 49(1)
C(11)	0.625(8	$5) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1049(5)	8323(2)	40(1) 55(1)
C(12)	0.625(6	5) 6510(10)	-190(5)	8824(2)	57(1)
C(14)	0.625(6	5) 0000(10) 5) 4459(11)	-484(5)	9120(2)	64 (1)
C(15)	0.625(6	5) 4716(11)	-1777(5)	9601(2)	63(1)
C(16)	0.625(6	5) 2500(11)	-2033(5)	9898(2)	68(1)
C(17)	0.625(6	5) 2707(11)	-3355(5)	10373(2)	62(1)
C(18)	0.625(6	5) 494(10)	-3621(6)	10670(2)	67(1)
C(19)	0.625(6	5) 745(10)	-4947(6)	11145(2)	68(1)
C(20)	0.625(6	5) -1483(11)	-5268(8)	11437(2)	86(2)
C(9')	0.375(6	5) 9499(19)	2542(17)	7197(4)	37(2)
C(10')	0.375(6	5) 7226(17)	2321(15)	7485(4)	38(2)
C(11')	0.375(6	5) 7552(13)	1349(9)	8043(3)	38(2)
C(12')	0.375(6	5) 5286(13)	931(9)	8294(3)	46(2)
C(13')	0.375(6	5) 5512(14)	-102(8)	8841(3)	50(2)
C(14')	0.375(6	5) 3343(14)	-692(8)	9062(2)	57(2)
C(15')	0.375(6	5) 3526(14)	-1654(8)	9618(3)	52(2)
C(16')	0.375(6	5) 1416(15)	-2315(9)	9835(2)	64(2)
C(17')	0.375(6	5) 1563(14)	-3226(9)	10403(3)	54(2)
C(18')	0.375(6	-472(15)	-3955(9)	10622(3)	62(2)
C(19')	0.3/5(6	-32/(16)	-4832(11)	11188(3)	67(2)
C(20')	0.3/5(6	(18) - 2394(18)	-5560(13)	11405(4)	84(3)
S(21)	1	4497(1) 4147(1)	9635(1) 7400(1)	6098(1) 7022(1)	31(1) 22(1)
S(22) F(21)	1	$4 \pm 4 / (\pm)$ 7 (1)	7409(1)	7033(1) 6250(1)	33(1)
F(21) F(22)	1	(1)	9049(1) 11306(1)	5546(1)	49(1) 51(1)
F(22) F(23)	1	1417(2)	8818(1)	5550(1)	$\frac{31(1)}{48(1)}$
F(24)	1	7420(2)	8889(1)	7253(1)	50(1)
F(25)	1	8502(2)	6430(1)	7224(1)	62(1)
F(26)	1	6402(2)	7197(2)	7893(1)	62(1)
0(21)	- 1	4373(2)	10900(1)	6402(1)	38(1)
0(22)	1	5971(2)	9644(1)	5622(1)	38(1)
0(23)	1	3890(2)	5875(1)	7124(1)	46(1)
0(24)	1	2458(2)	8615(1)	7258(1)	44(1)
N(21)	1	4854(2)	7920(1)	6417(1)	36(1)

C(21)	1	1580(2)	9899(2)	5847(1)	35(1)
C(22)	1	6793(2)	7500(2)	7369(1)	36(1)

Table 3. Hydrogen coordinates (x $10\,^4)$ and isotropic displacement parameters (Å 2 x $10\,^3)$ for C40 H60 F12 N6 08 S4.

	Осс. х	У	Z	Ueq
H(2)	1 6671	2790	6385	42
H(4)	1 11994	4951	6502	53
H(5)	1 10265	6047	5631	48
H(7)	1 6286	2445	5429	38
H(8)	1 6180	71.36	5289	36
H(9A)	0 625(6)11025	3236	7318	50
H(9B)	0 625(6)11083	1637	7081	50
H(10A)	0.625(6).7008	1891	7259	52
H(10B)	0.625(6).7060	3414	7530	52
H(11A)	0.625(6).9450	331	7934	58
H(11B)	0.625(6).9423	1858	8209	58
H(12A)	0.625(6) 5425	717	8087	66
H(12R)	0.625(6) 5504	2049	8433	66
н(13д)	0.625(6).7510	-1186	8716	68
H(13R)	0.625(6).7641	156	9067	68
н(14д)	0.625(6).3448	-755	8867	00 77
H(14R)	0 625(6) 3668	501	9244	77
н(15д)	0.625(6) 5000	-2769	9477	76
H(15R)	0.625(6) 5748	-1517	9852	76
н(16д)	0.625(6) 1454	-2259	9613	81
U(16D)	0.625(6) 1765	-1047	10029	01 81
н (10b) н (17b)	0.625(6) - 3449	-1310	102/2	75
H(17R)	0.625(6) 3747	-3126	10242	75
П(17D) П(19Л)	0.625(6) -548	-3855	10416	7.5
H(10A)	0.025(0) - 540	-2638	10410	01 81
H(10D)	0.025(0) = 255	-5020	11014	01
H(19A)	0.025(0) 1340 0.625(6) 1744	-16920	11/0/	82
$\Pi(I) D$	0.625(6) - 2291	-4092	11573	129
U(20R)	0.625(6) - 1147	-6119	11737	120
н (206) н (20С)	0.025(0) = 1147	-5576	11100	129
H(20C)	0.025(0) - 2402 0.375(6) 10405	-5570	7165	129
H(9C)	0.375(6)10403	1490	7105	45
H(9D)	$0.375(0) \pm 0.333$	3033	7420	45
H(10C)	0.375(0) 0370	1/0/	7270	45
H(10D)	0.375(6) 6269	275	75ZI 9014	40
	0.375(0) 0070	1054	0014	40
H(IID)	0.375(0) 0190	1954	0277	40
H(12C)	0.375(6) 4019	J/0 1011	0040	55
H(12D)	0.375(6) 4195	1911	0000	55 60
H(13C)	0.375(0) 0750	-1013	0000	60
H(ISD)	0.375(6) 3964	1242	9099	60
	0.375(0) 2910	-1040	0012	00
п(14D) п(15C)	0.375(0) 2000	∠10 _2522	9U/4 0600	00
	0.375(0) 4042	-2005	90U9 0070	62
	0.375(0) 3003	-2020	90/U 0501	00
H(16C)	U.3/5(6) 1096	-3020	9291	/ b 7.6
H(16D)		-1441	9830	/ Ю С Е
H(I/C)	0.3/5(6) 2938	-4066	10409	60 (F
н(т/D)	U.3/5(6) 1823	-2504	10646	60

Electronic Supplementary Material (ESI) for Soft Matter This journal is C The Royal Society of Chemistry 2012

H(18C)	0.375(6) -716	-4692	10382	74
H(18D)	0.375(6)-1853	-3119	10610	74
H(19C)	0.375(6) 1049	-5673	11200	81
H(19D)	0.375(6) -80	-4098	11428	81
H(20D)	0.375(6)-3808	-4794	11330	126
H(20D)	0.375(6)-3808	-4794	11330	126
H(20E)	0.375(6)-2299	-5876	11793	126
H(20F)	0.375(6)-2421	-6482	11234	126

Table 4. Anisotropic parameters (Å 2 x 10 3) for C40 H60 F12 N6 08 S4. The anisotropic displacement factor exponent takes the form:

	U11	U22	U33	U23	U13	U12
N(1)	30(1)	30(1)	34(1)	-6(1)	-3(1)	-7(1)
C(2)	37(1)	31(1)	36(1)	-5(1)	-7(1)	-5(1)
N(3)	44(1)	35(1)	39(1)	-11(1)	-12(1)	1(1)
C(4)	38(1)	47(1)	53(1)	-19(1)	-10(1)	-8(1)
C(5)	36(1)	43(1)	47(1)	-11(1)	-3(1)	-15(1)
C(6)	28(1)	28(1)	30(1)	-5(1)	1(1)	-7(1)
C(7)	37(1)	23(1)	35(1)	-3(1)	-2(1)	-7(1)
C(8)	36(1)	24(1)	34(1)	-6(1)	-1(1)	-10(1)
C(9)	43(3)	42(2)	39(2)	-7(2)	-9(2)	-2(2)
C(10)	49(4)	35(2)	42(2)	0(1)	-5(3)	0(2)
C(11)	63(3)	41(2)	38(2)	-5(1)	-10(2)	-2(2)
C(12)	69(3)	46(2)	42(2)	$\perp (\perp)$	0(3)	4(2)
C(13)	84(3)	44(2)	39(2)	⊥ (⊥) ⊑ (⊇)	-8(2)	-9(2)
C(14)	$\delta \angle (3)$	J/(∠) 51(2)	48 (Z) 47 (2)	⊃(∠) 2(1)	-1(2)	-10(2)
C(15)	00(J) 07(Z)	51(2)	4/(2)	5(1) 5(2)	-1(2)	-10(2)
C(10) C(17)	82 (3)	50(2)	40(2)	3(2)	-3(2)	-6(2)
C(18)	73(3)	66 (3)	$\frac{1}{51}(2)$	9(2)	(2)	2(2)
C(19)	71(3)	63(2)	59(2)	12(2)	2(2)	-4(3)
C(20)	66(4)	104(4)	68 (3)	20(3)	12(3)	0(3)
C(9')	38(6)	39(3)	33(3)	2(2)	-13(4)	-5(4)
C(10')	39(5)	38(3)	32(2)	-2(2)	4(3)	-2(3)
C(11')	45(4)	36(2)	33(3)	-4(2)	-3(3)	-7(3)
C(12')	44(4)	49(3)	41(3)	-1(2)	6(3)	-8(3)
C(13')	51(4)	52(3)	47(3)	-2(2)	-2(3)	-12(3)
C(14')	64(4)	62(3)	44(3)	5(2)	2(3)	-22(3)
C(15')	50(3)	58(3)	47(3)	3(2)	6(3)	-18(3)
C(16')	72(4)	78(4)	46(3)	1(3)	4(3)	-38(3)
C(17')	45(3)	61(3)	52(3)	4(2)	9(3)	-14(3)
C(18')	66(4)	77(4)	50(3)	-4(3)	4(3)	-40(3)
C(19')	51(4)	83(5)	64(4)	7(3)	7(4)	-21(4)
C(20')	79(6)	108(6)	78(5)	-15(4)	23(5)	-61(5)
S(21)	27(1)	27(1)	40(1)	-7(1)	-6(1)	-5(1)
S(22)	23(1)	31(1)	44(1)	-3(1)	-9(1)	-6(1)
F(21)	2/(1)	69(1)	50(1)	-8(1)	-2(1)	-/(1)
F(22)	45(1) 40(1)	41(1) 40(1)	62(1) 61(1)	5(1)	$-\perp / (\perp)$	0(1)
F(23)	40(1) 20(1)	49(1) 50(1)	61(1)	-20(1)	-14(1)	-9(1)
F(24) F(25)	39(1) 21(1)	50(1)	69(1) 04(1)	-13(1)	-11(1)	-19(1)
r(25) F(26)	51(1) 55(1)	02(1) 87(1)	94(1)	-33(1)	-16(1)	(1)
$\cap (21)$	39(1)	30(1)	19(1)	-12(1)	-7(1)	-7(1)
O(22)	32(1)	38(1)	44(1)	-8(1)	-2(1)	-8(1)
0(23)	45(1)	35(1)	61(1)	4(1)	-20(1)	-16(1)
0(24)	26(1)	48(1)	53(1)	-4(1)	0(1)	0(1)
N(21)	39(1)	27(1)	43(1)	-8(1)	-9(1)	-2(1)
C(21)	31(1)	33(1)	42(1)	-6(1)	-7(1)	-4(1)
C(22)	27(1)	39(1)	45(1)	-10(1)	-7(1)	-5(1)

-2 π^2 [h^2 a*² U₁₁ + ... + 2 h k a* b* U₁₂]

Electronic Supplementary Material (ESI) for Soft Matter This journal is C The Royal Society of Chemistry 2012

N(1)-C(2)	1.3397(18)	C(4)-N(3)-C(9')	133.2(5)
N(1) - C(5)	1.3841(18)	C(5) - C(4) - N(3)	107.71(13)
N(1) - C(6)	1,4366(17)	C(4) - C(5) - N(1)	106.78(13)
C(2) - N(3)	1 3307(18)	C(7) = C(6) = C(8)	121 81(12)
C(2) $N(3)$	1 274(2)	C(7) C(6) N(1)	121.01(12)
N(3) = C(4)	1.3/4(2)	C(7) = C(6) = N(1)	119.20(12)
N(3) - C(9)	1.449(7)	C(8) - C(6) - N(1)	118.91(12)
N(3)-C(9')	1.581(9)	C(6) - C(7) - C(8) #1	119.36(12)
C(4)-C(5)	1.349(2)	C(6)-C(8)-C(7)#1	118.83(12)
C(6)-C(7)	1.3844(19)	N(3)-C(9)-C(10)	108.2(5)
C(6)-C(8)	1.3893(18)	C(9) - C(10) - C(11)	111.9(4)
C(7) - C(8) # 1	1,3912(19)	C(12) - C(11) - C(10)	111.3(4)
C(8) - C(7) = 1	1 3912(19)	C(11) - C(12) - C(13)	115 0(4)
C(0) = C(10)	1 496(6)	C(14) = C(13) = C(12)	113 A(A)
C(10) = C(10)	1 526(6)	C(14) C(15) C(12)	115.7(4)
C(10) = C(11)	1.556(6)	C(13) = C(14) = C(15)	113.3(4)
C(11) - C(12)	1.518(5)	C(16) - C(15) - C(14)	114.6(4)
C(12)-C(13)	1.532(5)	C(15) - C(16) - C(17)	115.5(4)
C(13)-C(14)	1.494(6)	C(18)-C(17)-C(16)	115.7(4)
C(14)-C(15)	1.521(5)	C(17)-C(18)-C(19)	114.8(4)
C(15)-C(16)	1.491(6)	C(20)-C(19)-C(18)	115.4(4)
C(16)-C(17)	1.527(5)	C(10')-C(9')-N(3)	118.0(8)
C(17) - C(18)	1,491(6)	C(9') - C(10') - C(11')	111.9(7)
C(18) - C(19)	1 529(6)	C(12!) - C(11!) - C(10!)	111 3(6)
C(19) - C(20)	1 507(6)	C(11') - C(12') - C(13')	1139(5)
C(1) C(20)	1 505(0)	C(11) C(12) C(13)	110.0(5)
C(9) = C(10)	1.505(9)	C(14) - C(13) - C(12)	114.3(3)
$C(10^{-1}) = C(11^{-1})$	1.535(10)	$C(13^{\circ}) = C(14^{\circ}) = C(15^{\circ})$	114.5(6)
C(11') - C(12')	1.515(7)	C(16') - C(15') - C(14')	115.3(6)
C(12')-C(13')	1.529(9)	C(15')-C(16')-C(17')	115.3(6)
C(13')-C(14')	1.500(8)	C(18')-C(17')-C(16')	116.7(6)
C(14')-C(15')	1.523(8)	C(17')-C(18')-C(19')	116.3(6)
C(15')-C(16')	1.496(7)	C(20')-C(19')-C(18')	115.8(8)
C(16')-C(17')	1.529(8)	O(22)-S(21)-O(21)	117.90(6)
C(17') - C(18')	1,490(7)	O(22) - S(21) - N(21)	108.52(6)
C(18') - C(19')	1 514 (9)	O(21) - S(21) - N(21)	117 15(6)
C(10!) - C(20!)	1 504(8)	O(22) = O(21) = O(21)	103 67 (6)
C(13) = C(20)	1 4200(10)	O(22) = O(21) = O(21)	103.07(0)
S(21) = O(22)	1.4300(10)	O(21) - S(21) - C(21)	103.90(0)
S(21) = O(21)	1.43/4(10)	N(21) - S(21) - C(21)	103.50(7)
S(21)-N(21)	1.5/46(12)	O(24) - S(22) - O(23)	119.56(/)
S(21)-C(21)	1.8402(14)	O(24)−S(22)−N(21)	116.18(6)
S(22)-O(24)	1.4229(11)	O(23)-S(22)-N(21)	107.45(7)
S(22)-O(23)	1.4309(11)	O(24)-S(22)-C(22)	104.26(7)
S(22)-N(21)	1.5880(13)	O(23)-S(22)-C(22)	103.95(7)
S(22)-C(22)	1.8338(14)	N(21)-S(22)-C(22)	103.35(7)
F(21)-C(21)	1.3258(17)	S(21)-N(21)-S(22)	124.52(8)
F(22) - C(21)	1.3367(17)	F(23) - C(21) - F(21)	109.33(12)
F(23) - C(21)	1 3217(17)	F(23) - C(21) - F(22)	108 29(12)
F(24) = C(22)	1 3188(17)	F(21) = C(21) = F(22)	100.29(12) 107.59(12)
$\Gamma(24) = C(22)$	1.3100(17)	F(21) = C(21) + F(22)	111 40(0)
F(25) = C(22)	1.3189(17)	F(23) = C(21) = S(21)	111.40(9)
F (26) -C (22)	1.3231(18)	F(21) - C(21) - S(21)	110./2(10)
		F(22)-C(21)-S(21)	109.40(10)
C(2)-N(1)-C(5)	108.44(12)	F(25)-C(22)-F(24)	108.94(12)
C(2)-N(1)-C(6)	125.30(11)	F(25)-C(22)-F(26)	108.55(13)
C(5)-N(1)-C(6)	126.26(12)	F(24)-C(22)-F(26)	108.45(12)
N(3)-C(2)-N(1)	108.44(13)	F(25)-C(22)-S(22)	111.28(10)
C(2) - N(3) - C(4)	108.64(12)	F(24)-C(22)-S(22)	110.36(10)
C(2) - N(3) - C(9)	131.0(3)	F(26) - C(22) - S(22)	109.19(10)
C(4) - N(3) - C(9)	120 3(3)	_ (,(,(,	, , , , , _ , _ ,
C(2) = N(3) = C(9!)	117 9(5)		
C(2) = II(3) = C(3)	1 I I I I I I I I I I I I I I I I I I I		

Table 5. Bond lengths [Å] and angles [°] for C40 H60 F12 N6 O8 S4

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1 Table 6. Torsion angles [°] for C40 H60 F12 N6 08 S4.

		O(22)-S(21)-C(21)-F(22)	-64.19(11)
C(5)-N(1)-C(2)-N(3)	0.02(16)	O(21)-S(21)-C(21)-F(22)	59.65(11)
C(6)-N(1)-C(2)-N(3)	179.82(12)	N(21)-S(21)-C(21)-F(22)	-177.43(10)
N(1)-C(2)-N(3)-C(4)	-0.16(16)	O(24)-S(22)-C(22)-F(25)	176.11(11)
N(1)-C(2)-N(3)-C(9)	-176.9(5)	O(23)-S(22)-C(22)-F(25)	50.12(13)
N(1)-C(2)-N(3)-C(9')	175.0(6)	N(21)-S(22)-C(22)-F(25)	-62.00(12)
C(2) - N(3) - C(4) - C(5)	0.24(17)	O(24) - S(22) - C(22) - F(24)	-62.81(11)
C(9) - N(3) - C(4) - C(5)	177.4(4)	O(23) - S(22) - C(22) - F(24)	171.19(10)
C(9') - N(3) - C(4) - C(5)	-173.8(7)	N(21) - S(22) - C(22) - F(24)	59.08(11)
N(3) - C(4) - C(5) - N(1)	-0.22(17)	O(24) - S(22) - C(22) - F(26)	56.31(12)
C(2) - N(1) - C(5) - C(4)	0.13(16)	O(23) - S(22) - C(22) - F(26)	-69.69(12)
C(6) - N(1) - C(5) - C(4)	-179.67(13)	N(21) - S(22) - C(22) - F(26)	178.20(10)
C(2) - N(1) - C(6) - C(7)	-40.40(19)		· · ·
C(5) - N(1) - C(6) - C(7)	139.36(14)		
C(2) - N(1) - C(6) - C(8)	139.39(13)		
C(5) - N(1) - C(6) - C(8)	-40.85(19)		
C(8) - C(6) - C(7) - C(8) #1	0.0(2)		
N(1) - C(6) - C(7) - C(8) #1	179.74(11)		
C(7) - C(6) - C(8) - C(7) #1	0.0(2)		
N(1) - C(6) - C(8) - C(7) #1	-179.74(11)		
C(2) - N(3) - C(9) - C(10)	-39.6(9)		
C(4) - N(3) - C(9) - C(10)	144.0(5)		
N(3) - C(9) - C(10) - C(11)	175.9(6)		
C(9) - C(10) - C(11) - C(12)	-178.4(6)		
C(10) - C(11) - C(12) - C(13)	170.6(5)		
C(11) - C(12) - C(13) - C(14)	-178.2(4)		
C(12) - C(13) - C(14) - C(15)) $176.4(4)$		
C(13) - C(14) - C(15) - C(16)) 178.9(4)		
C(14) - C(15) - C(16) - C(17)) $178.4(4)$		
C(15) - C(16) - C(17) - C(18)) $-179.7(4)$		
C(16) - C(17) - C(18) - C(19)	-179.9(4)		
C(17) - C(18) - C(19) - C(20)	-177.9(5)		
C(2) - N(3) - C(9') - C(10')	-34.7(13)		
C(4) - N(3) - C(9') - C(10')	138.9(8)		
N(3) - C(9') - C(10') - C(11)	-178.7(10)		
C(9') - C(10') - C(11') - C(12')	() -171.5(9)		
C(10') - C(11') - C(12') - C(12')	3′) 177.4(8)		
C(11') - C(12') - C(13') - C(14')	4′) -172.6(6)		
C(12') - C(13') - C(14') - C(15')	5') -177.1(6)		
C(13')-C(14')-C(15')-C(16	6') $-177.3(7)$		
C(14')-C(15')-C(16')-C(1	7′) -177.6(6)		
C(15') - C(16') - C(17') - C(18)	8′) -177.6(7)		
C(16') - C(17') - C(18') - C(19)	9′) -179.0(7)		
C(17') - C(18') - C(19') - C(20)	0′) 179.8(8)		
O(22) - S(21) - N(21) - S(22)	161.23(8)		
O(21) - S(21) - N(21) - S(22)	24.64(12)		
C(21) - S(21) - N(21) - S(22)	-89.09(10)		
O(24) - S(22) - N(21) - S(21)	21.01(12)		
O(23) - S(22) - N(21) - S(21)	157.97(9)		
C(22)-S(22)-N(21)-S(21)	-92.49(10)		
O(22) - S(21) - C(21) - F(23)	55.50(11)		
O(21)-S(21)-C(21)-F(23)	179.34(10)		
N(21)-S(21)-C(21)-F(23)	-57.74(11)		
O(22)-S(21)-C(21)-F(21)	177.40(10)		
O(21)-S(21)-C(21)-F(21)	-58.76(11)		
N(21)-S(21)-C(21)-F(21)	64.16(11)		

Symmetry transformations used to generate equivalent atoms:#1 -x+1,-y+1,-z+1

REFERENCES

SAINT (2006) Release 7.34A; Integration Software for Single Crystal Data. Bruker AXS Inc., Madison, WI 53719-1173.

Sheldrick, G.M. (1996). SADABS, Bruker Area Detector Absorption Corrections. Bruker AXS Inc., Madison, WI 53719-1173.

Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

SHELXTL (2001) version 6.12; Bruker Analytical X-ray Systems Inc., Madison, WI 53719-1173.

APEX2 (2009) ; Bruker Molecular Analysis Research Tool. Bruker AXS Inc., Madison, WI 53719-1173.

Spek, A.L. (2008). PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.

Maris, T. (2004). UdMX, University of Montréal, Montréal, QC, Canada.

XPREP (2008) Version 2008/2; X-ray data Preparation and Reciprocal space Exploration Program. Bruker AXS Inc., Madison, WI 53719-1173.