ARTICLE TYPE

Structural and dynamical properties of Polyethylenimine in explicit water at different protonation states: A Molecular Dynamics Study †

Chandan Kumar Choudhury ^a and Sudip Roy *^a

Received Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

This journal is © The Royal Society of Chemistry [year]

^a Physical Chemistry Division, National Chemical Laboratory, Pune, India. Fax: +91 (020) 25902615; Tel: +91 (020) 2590 2735; E-mail: s.roy@ncl.res.in

Atom No.	Atom name	Atom type	Charge , q_i	
1	N	amber99_38 (N2)	- 0.740	
2, 3	H1, H2	amber99_17 (H)	0.250	
4	CA	amber99_11 (CT)	- 0.140	
5, 6, 8, 9	HA1, HA2, HB1, HB2	amber99_19 (H1)	0.115	
7	СВ	amber99_11 (CT)	-0.080	
10	Ν	amber99_81 (NT)	-0.593	
11,	Н	amber99_17 (H)	0.269	
12, 15	CA, CB	amber99_11 (CT)	- 0.086	
13, 14, 16, 17	HA1, HA2, HB1, HB2	amber99_19 (H1)	0.124	
18	Ν	amber99_81 (NT)	-0.500	
19,	Н	amber99_17 (H)	0.280	
20	CA	amber99_11 (CT)	- 0.081	
21, 22	HA1, HA2	amber99_19 (H1)	0.125	
23	CB	amber99_11 (CT)	- 0.300	
24, 25, 26	HB1, HB2, HB3	amber99_18 (HC)	0.117	

Table S1 Coulombic parameters (q_i , see Equation 2) for unprotonated PEI chain. See Figure S1(a) for atom numbers.

Atom No.	Atom name	Atom type	Charge , q_i	
1	Ν	amber99_81 (NT)	- 0.417	
2, 3, 4	H1, H2, H3	amber99_17 (H)	0.360	
5	CA	amber99_11 (CT)	0.056	
6, 7	HA1, HA2	amber99_19 (H1)	0.087	
8	СВ	amber99_11 (CT)	-0.147	
9, 10	HB1, HB2	amber99_19 (H1)	0.127	
11	Ν	amber99_81 (NT)	-0.593	
12	Н	amber99_17 (H)	0.269	
13, 16	CA, CB	amber99_11 (CT)	- 0.086	
14, 15, 17, 18	HA1, HA2, HB1, HB2	amber99_19 (H1)	0.124	
19	N	amber99_81 (NT)	-0.150	
20, 21	H1, H2	amber99_17 (H)	0.340	
22, 25	CA , CB	amber99_11 (CT)	- 0.023	
23, 24, 26, 27	HA1, HA2, HB1, HB2	amber99_19 (H1)	0.129	
28	Ν	amber99_81 (NT)	-0.500	
29	Н	amber99_17 (H)	0.280	
30	CA	amber99_11 (CT)	- 0.081	
31, 32	HA1, HA2	amber99_19 (H1)	0.125	
33	СВ	amber99_11 (CT)	- 0.300	
34, 35, 36	HB1, HB2, HB3	amber99_18 (HC)	0.117	

Table S2 Coulombic parameters (q_i , see Equation 2) for alternate protonated PEI chain. See Figure S1(b) for atom numbers.

Table S3 Coulombic parameters (q_i , see Equation 2) for completely
protonated PEI chain. See Figure S1(c) for atom numbers.

Atom No.	Atom name	Atom type	Charge, q_i	
1	Ν	amber99_81 (NT)	- 0.417	
2, 3, 4	H1, H2, H3	amber99_17 (H)	0.36	
5	CA	amber99_11 (CT)	0.056	
6, 7	HA1, HA2	amber99_19 (H1)	0.087	
8	CB	amber99_11 (CT)	-0.147	
9, 10	HB1, HB2	amber99_19 (H1)	0.127	
11	Ν	amber99_81 (NT)	-0.150	
12, 13	H1, H2	amber99_17 (H)	0.340	
14, 17	CA, CB	amber99_11 (CT)	- 0.023	
15, 16, 18, 19	HA1, HA2, HB1, HB2	amber99_19 (H1)	0.129	
20	Ν	amber99_81 (NT)	-0.135	
21, 22	H1, H2	amber99_17 (H)	0.331	
23	CA	amber99_11 (CT)	- 0.067	
24, 25	HA1, HA2	amber99_19 (H1)	0.120	
26	СВ	amber99_11 (CT)	- 0.314	
27, 28, 29	HB1, HB2, HB3	amber99_18 (HC)	0.160	

Atom type	σ , nm	ε , kJ mol ⁻¹	
amber99_11 (CT)	0.339967	0.4577300	
amber99_17 (H)	0.106908	0.0656888	
amber99_18 (HC)	0.264953	0.0656888	
amber99_19 (H1)	0.247135	0.0656888	
amber99_38 (N2)	0.325000	0.7112800	
amber99_81 (NT)	0.325000	0.7112800	

Table S4 Lennard Jones parameters (σ and ε , see Equation 2) for the atom types mentioned in Table S1, Table S2, and Table S3.

Table S5 Bond parameters (b_0 and k_{ij}^{bonds} , see Equation 1) for the bond between the atom types (ij) in Table S1, Table S2 and Table S3.

Bond (Atom types, ij)	b_0 , nm	k_{ij}^{bonds} , kJ mol ⁻¹ nm ²
H - N2	0.10100	363171.2
N2 - CT	0.14630	282001.6
CT - H1	0.10900	284512.0
CT - CT	0.15260	259408.0
CT - NT	0.14710	307105.6
NT - H	0.10100	363171.2
CT - HC	0.10900	284512.0

Table S6 Bonded angle parameters (θ_0 and k_{ijk}^{angle}) for angles formed by the atom types (*ijk*) mentioned in Table S1, Table S2 and Table S3.

Angles (Atom types, <i>ijk</i>)	$ heta_0, \circ$	k_{ijk}^{angle} , kJ mol ⁻¹ rad ²
H - N2 - H	120.0	292.880
H - N2 - CT	118.4	418.400
N2 - CT - H1	109.5	418.400
N2 - CT - CT	111.2	669.400
CT - CT - H1	109.5	418.400
H1 - CT - H1	109.5	292.800
CT - CT - NT	111.2	669.400
CT - NT - H	109.5	418.400
NT - CT - H1	109.5	418.400
CT - NT - CT	109.5	418.400
CT - CT - HC	109.5	418.400
HC - CT - HC	109.5	292.800
H - NT - H	109.5	292.880

Table S7 Dihedral parameters (ϕ_s and $k_{ijkl}^{dihedral}$, see Equation 1) for Harmonic functions and the values of C_n for Ryckaert-Bellemans functions. X denotes any undefined atom types in the harmonic functions in Table S1, Table S2 and Table S3

Dihedral (Atom types), <i>ijkl</i>	ϕ_s	$k_{ijkl}^{dihedral}$ (kJ mol ⁻¹)	n
H - N2 - CT - CT	0.0	3.7656	3
H - NT - CT - CT	0.0	3.7656	3
H - NT - CT - H1	0.0	3.7656	3
CT - CT - NT - CT	0.0	0.6276	3
CT - CT - NT - CT	180.0	1.004	2

Dihedral (Atom types), $ijkl$, kJ mol ⁻¹	C ₀	C1	C ₂	C ₃	C4	C ₅
X - N2 - CT - X	0.0	0.0	0.0	0.0	0.0	0.0
X - CT - CT - X	0.65084	1.95253	0.0	-2.60338	0.0	0.0

Table S8 Possible nearest neighbor (a, b) and next nearestneighbour (c, d and e) conformations for the PEI chain

Fig. S1 Structure of PEI with atom number. (a) Unprotonated chain, (b) Alternate protonated, and (c) completely protonated chain. For unprotonated and completely protonated chain n = 18 for 20-mer and 48 for 50-mer, while for alternated protonated chain, n = 9 and 24 for 20 and 50-mer, respectively. The atoms are numbered for Table S1,Table S2 and Table S3.

Fig. S2 The variation of density of 20 and 50-mer PEI with time.

Fig. S3 (a) The nearest neighbour, NN and (b) The next nearest neighbour, NNN distributions of the nitrogen atoms for the 20-mer PEI.

Fig. S4 (a) End-to-end distance and (b) its distribution of 20-mer PEI for different protonation states.

Fig. S5 (a) Radius of Gyration and (b) its distribution of 20-mer PEI for different protonation states.

Fig. S6 Dihedral distribution for 20-mer PEI for different protonation states.

Fig. S7 Distribution of ratio (*syn/anti*) when (a) all, (b) N-C-C-N and (c) C-C-N-C dihedrals were considered. (d) Alternate *syn-anti* occurrences of all the dihedrals for 20-mer PEI.

Fig. S8 The pair distribution plot of (a) N of PEI and O of Water, (b) C of PEI and O of Water and (c) N and C of PEI and O of Water for 20-mer PEI.

Fig. S9 Residence time probability of the water molecules in different solvation shells of the polymer chain (50-mer) at (a) 310 K (b) 320 K and (c) 330 K.

Fig. S10 Mean square displacement of water molecules around the (a) 1^{st} solvation shell, and (b) 2^{nd} solvation shell at different temperatures for unprotonated (solid lines) and protonated (dotted - dashed lines) states of 50-mer PEI.