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2Department of Mechanical Engineering
Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA 02139-4307 Cambridge, USA
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FIG. 1. (a) The experimental setup for the observation of the gap in the plane (r, z). (b) Top view of the Couette cell and
of the measurement configuration for ultrasonic velocimetry. In both cases, the outer cylinder is surrounded by water which
keeps the sample at a constant temperature.
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FIG. 2. (a) Visualization of the inner and outer gaps in a cylindrical double-gap geometry. The fluid is [CTAB]=0.3 M and
[NaNO3]=0.4 M at T=30◦C. The shear rates in the inner and outer gaps are respectively γ̇in ' 35 s−1 and γ̇out ' 45 s−1. Both
gaps are 1.5 mm wide, the inner gap with Λin = 0.16 and the outer gap with Λout = 0.12. (b) Spatiotemporal diagrams of the
interface kinematics in the inner and outer gap. The vortices are travelling along z in opposite direction, most likely due to an
axial flow generated at the bottom of the double gap apparatus. (c) Sketch of the double-gap geometry.
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FIG. 3. (a) Flow curves for varying salt concentrations, with [CTAB]=0.3 M and T = 30◦C, in the TC cell with Λ = 0.08. (b)
Corresponding dimensionless curves.
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FIG. 4. (a) Flow curves for varying temperatures, with [CTAB]=0.3 M and [NaNO3]=0.4 M, in the TC cell with Λ = 0.04.
(b) Corresponding dimensionless curves.

FIG. 5. Stabilization of the flow by a quasi-static increase of T . By increasing temperature quasi-statically (0.5◦C every 10 min,
dotted lines) we can study the transition between C2 and C3 (CTAB 0.3M, NaNO3 0.4M, Λ = 0.08, γ̇ = 180 s−1). Travelling
events at T ' 34.5 and 36◦C are due to a bubble at the interface.
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