Supporting Information

For

Understanding the Multiple Orientations of Isolated Superellipsoidal Hematite Particles at the Oil-Water Interface

Adam R. Morgan, Nicholas Ballard, Luke A. Rochford, Gabit Nurumbetov, Thomas S. Skelhon, Stefan A.F. Bon*

[*] dr.ir. Stefan A. F. Bon
Department of Chemistry
The University of Warwick, CV4 7AL (United Kingdom)
E-mail: (s.bon@warwick.ac.uk)
Web: www.bonlab.info
Twitter: bonlab
Youtube: www.youtube.com/bonlabTV

Experimental Details

Materials

Reagent grade iron(III) chloride hexahydrate, hexadecane, methanol, sodium hydroxide, phytagel, PDMS (200 fluid, 10cSt), and PVP-K30 (40,000 g mol⁻¹) were all used as received from Sigma Aldrich. Phytagel was obtained from Sigma Aldrich. Deionized water was produced by a Milli-Q purification unit with a conductivity of 18M Ω . Beer bottles and their swing tops were obtained from JBC glassware.

Preparation of Hematite Superellipsoids

Superellipsoidal hematite particles were prepared by the route originally described by Muramatsu.^[1] Iron(III) chloride hexahydrate (2.0M, 100mL) was added to a 200mL beer bottle fitted with a ceramic swing top, and sealed with a Teflon-lined rubber seal. Sodium hydroxide solution (6.0M, 90mL) was slowly fed into the iron chloride solution under vigorous stirring over a period of 5 minutes before a small aliquot of deionized water (10mL) was added. The bottle was sealed and transferred to an oven at 100°C where it was left for 8 days.

The amber-colored supernatant was removed and the sediment re-dispersed in water before 3 rounds of centrifugation at 2000rpm, re-dispersing in water each time. PVP-K30 (10.0g) was added and the solution was allowed to stir for 48 hours to ensure complete absorption before they were cleaned by a further 3 rounds of centrifugation/dispersion in water, and drying in an oven under vacuum at 60°C for 48 hours.

Assembly and Immobilisation of Particle onto the Oil-Water Interface

A 2.0 wt% solution of phytagel was made up by dissolving in water at 80°C with vigorous stirring, and then left to cool to 50°C with light stirring, until no bubbles remained in the system. This solution was placed in a Petri dish and n-hexadecane at 50°C was layered on top. 100µl of a 1.0 wt% hematite particle suspension in isopropanol was injected at the oil-water interface by syringe, and the Petri dish was left to cool for 30 minutes at room temperature until the aqueous phase gelled. The oil layer was gently removed by pipette and replaced by a Sylgard 184 elastomer at a mass ratio of 9:1 PDMS:curing agent ratio, which had previously been degassed in a vacuum. The liquid PDMS was gently poured over the gel surface and left to cure for 2 days at room temperature. At this point the PDMS layer was peeled from the hydrogel surface and immersed in hot water for two minutes to remove any residual phytagel.

Imaging of Trapped Hematite Particles

Squares of PDMS (1cm x 1cm) were cut before cleaning in boiling deionized water for 2 minutes.

Atomic force microscopy (AFM) images were obtained using an Asylum Research MFP-3D (Santa Barbara, USA) in AC mode using AC240TS cantilevers (Olympus).

SEM sample were prepared by sputter-coating PDMS squares with platinum at a 45° angle. An operating voltage of 15kV was used, calculated to give a surface thickness of 5nm. Imaging was performed at a 14.1° angle with respect to the plane of the interface on a Zeiss Supra 55VP SEM, operated at 10kV. Particle sizes were averaged over 100 isolated particles. A simple trigonometric correction factor was applied when measuring particle height in order to account for the tilt of the stage.

MATLAB Simulations of Stable Particle Orientations

Simulations were performed in Matlab using a triangular tessellation method similar to that described by van Roij *et al.*^[2] The particles are created from a series of points which all fit the unique expression for a superellipsoid (**Equation 1**).

$$\left(\frac{x^{2/n_2}}{r_x} + \frac{y^{2/n_2}}{r_y}\right)^{n_2/n_1} + \frac{z^{2/n_1}}{r_z} = 1$$
(1)

Where *x*, *y*, and *z* denote the coordinates of the point r_x , r_y , and r_z , which are the particles x, y, and z radii. n_1 and n_2 act as the "squareness" parameters in the *z* axis and the x-y plane respectively, with $0 < n_1, n_2 < \infty$. From the input parameters of r_x , r_y , r_z , n_1 , n_2 , and the number of points to be created, the particle shape is computed. The point coordinates are obtained by first generating an evenly distributed set of points around a sphere with $r_x = r_y = r_z = 1$ using the golden section spiral method. The x, y, and z coordinates from the sphere are converted into spherical coordinates and the x, y, and z values for the superellipsoid are calculated from the parametric equations (**Equation 2-4**)

$$x = r_x \cos^{n_1} \theta \cos^{n_2} \varphi \tag{2}$$

$$y = r_y \cos^{n_1} \theta \sin^{n_2} \varphi \tag{3}$$

$$z = r_z \sin^{n_1} \theta \tag{4}$$

The surface of the particle is obtained from this set of data points by taking the convex hull of the data set, resulting in a series of triangles that connect the points.

The surface created by the above equation is bound by a sphere of minimum radius (R) centered at the origin which can be rotated about the x (θ_2) and y (θ_1) axes, and translated in the *z* axis to give any position and orientation of the particle with respect to the interface. The particle movement in the *z* axis is defined by the vertical coordinate ž (**Equation 5**).

$$= z/R$$

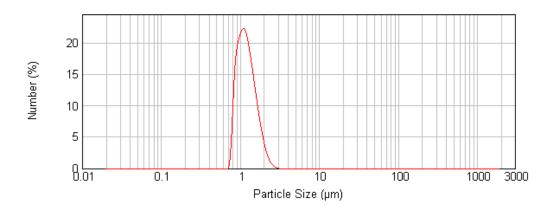
ž

Where z is the distance from the center of the sphere bounding the particle to the interface, and R is the radius of the bounding sphere (where \check{z} =1 the particle is in the oil phase and where \check{z} =-1 is in the water phase). The particle is scanned through various positions by translating and rotating the points, and at each position the associated energy is calculated. The energy is calculated by summing the area of triangles above and below the interface and multiplying by the interfacial tension. Triangles which intersect the interface are subdivided further and the new triangles are designated into the appropriate phase in a method analogous to that of van Roij *et al.* The area of the interface that is 'removed' upon adsorption of the particle is determined by connecting the points where lines from the triangular tessellation intersect the liquid-liquid interface and then the areas of the described polygon is calculated. This can be summarized mathematically (**Equation 6**).

(5)

$$E = S_{P1}A_{P1} + S_{P2}A_{P2} - S_{12}A_{12}$$
(6)

Where *E* is the energy *S* is the surface tension and *A* is the area. The subscripts *P1*, *P2* and *12* denote the particle-oil interface, particle-water interface and oil-water interface respectively. Particle trajectories and transitions between states were calculated by taking the negative gradient at each point in the 3-dimensional free energy landscape (**Equation 7**) calculated in the above section.


$$-\nabla E\left(\theta_{1},\theta_{2},z\right) = -\left(\frac{d\theta_{1}}{dE} + \frac{d\theta_{2}}{dE} + \frac{dz}{dE}\right)$$
(7)

Trajectories that follow the path of the steepest descent in terms of energy from an initial point $P^{0}(\theta_{1}^{0}, \theta_{2}^{0}, z^{0})$ are calculated by interpolating between the values of the recorded

gradient and using the constituent $d\theta_1$, $d\theta_2$, and dz values to determine direction of the particle motion. A zero temperature string method was used to find pathways with an energy barrier, which allows one to calculate the minimum energy pathway between two energy minima.^[3]

Particle Size Distribution Measurements with Mie Scattering

A Malvern Mastersizer Hydro 2000S was used to measure the particle size and particle size distribution (**Figure 1**). The number average particle size was 1.159µm and the polydispersity was 0.225.

Figure 1. Dynamic Light Scattering Measurement shows a monomodal size distribution of the hematite particles.

SEM Image Analysis of Particles

Hematite superellipsoids were analyzed by SEM to determine the characteristic length and polydispersity (**Figure 2**). Over 100 particles the characteristic length was $1.361 \mu m \pm 0.124$. Deviations from the mean were within 9%.

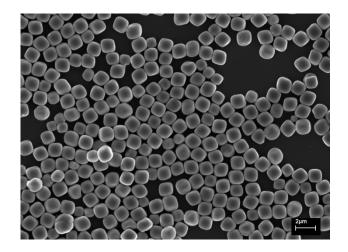


Figure 2. SEM image showing monodisperse hematite particles. Scale bar is 2µm.

All SEM images analyzed can be found in the corresponding .ZIP file accompanying this supporting information. Some images were used to analyze more than one particle.

The results of SEM image analysis of all 100 particles can be found below. Note that the perceived height was obtained by measuring the distance from the highest point on the particle to the plane of the PDMS interface using the software ImageJ. Height corrections were made through simple trigonometric calculations to account for differences in the apparent height and actual height due to the viewing angle of the detector, which was 14.1°

Particle	File Name	Orientation	Perceived Height	Corrected Height
Number			(<i>nm</i>)	(<i>nm</i>)
1	Hematite 001	Tilted	837	863
2	Hematite 002	Tilted	756	780
3	Hematite 003	Tilted	867	894
4	Hematite 004	Tilted	811	836

5	Hematite	Flat	1000	1031
	005			
6	Hematite	Flat	1061	1094
	006			
7	Hematite	Tilted	914	942
	007			
8	Hematite	Tilted and	514	530
	008	Sunk		
9	Hematite	Flat	1062	1095
	009			
10	Hematite	Flat	1057	1090
	010			
11	Hematite	Flat	979	1009
	011			
12	Hematite	Flat	952	982
	012			
13	Hematite	Tilted	865	892
	013			
14	Hematite	Flat	1033	1065
	014			
15	Hematite	Tilted	850	876
	015			
16	Hematite	Flat	1035	1067
	016			
17	Hematite	Flat	726	749

	017			
18	Hematite	Tilted and	495	510
	018	Sunk		
19	Hematite	Flat	1079	1113
	019			
20	Hematite	Tilted	759	783
	020			
21	Hematite	Flat	1049	1082
	021			
22	Hematite	Flat	1082	1116
	022			
23	Hematite	Flat	1068	1101
	023			
24	Hematite	Flat	1032	1064
	024			
25	Hematite	Tilted	932	961
	025			
26	Hematite	Tilted	900	928
	026			
27	Hematite	Tilted	838	864
	027			
28	Hematite	Flat	1022	1054
	028		005	102.5
29	Hematite	Flat	995	1026
	029			

30	Hematite	Flat	1023	1055
	030			
31	Hematite	Flat	1042	1074
l	031			
32	Hematite	Flat	952	982
	032			
33	Hematite	Flat	851	878
	033			
34	Hematite	Flat	1002	1033
25	034		017	0.15
35	Hematite	Tilted	917	946
36	035 Hematite	Flat	1103	1137
50	036	Γιαι	1105	1137
37	Hematite	Flat	1044	1077
l	037			
38	Hematite	Tilted	910	938
l	038			
39	Hematite	Tilted	778	802
l	039			
40	Hematite	Tilted	710	732
l	040			
41	Hematite	Flat	1064	1097
	041			
42	Hematite	Tilted	785	809

	042			
43	Hematite 043	Flat	1082	1116
44	Hematite 044	Tilted	902	930
45	Hematite	Flat	1013	1045
46	045 Hematite	Flat	1001	1032
47	046 Hematite	Flat	1006	1037
48	047 Hematite	Tilted	896	924
49	048 Hematite	Tilted	881	908
50	049 Hematite	Tilted	847	873
51	050 Hematite	Tilted	939	968
52	051 Hematite	Flat	1010	1041
53	052 Hematite	Flat	1080	1114
54	053 Hematite	Tilted	972	1002
	054			

55	Hematite	Flat	1032	1064
	055			
56	Hematite	Tilted and	639	659
	056	Sunk		
57	Hematite	Flat	1044	1077
	057			
58	Hematite	Flat	1110	1145
	058			
59	Hematite	Tilted	872	899
	059			
60	Hematite	Flat	1052	1085
	060			
61	Hematite	Flat	1089	1123
	061			
62	Hematite	Flat	1055	1088
	062			
63	Hematite	Flat	881	908
	063			
64	Hematite	Flat	1010	1041
	064			
65	Hematite	Tilted	895	923
	065			
66	Hematite	Flat	1060	1093
	066			
67	Hematite	Tilted	804	829

	066			
68	Hematite	Tilted and	523	539
	066	Sunk		
69	Hematite	Flat	1080	1114
	067			
70	Hematite	Flat	900	928
	068			
71	Hematite	Tilted and	578	596
	069	Sunk		
72	Hematite	Tilted	782	806
	070			
73	Hematite	Flat	948	978
	071			
74	Hematite	Flat	1003	1034
	072			
75	Hematite	Flat	1084	1118
	073			
76	Hematite	Flat	1100	1134
	073			
77	Hematite	Flat	1066	1099
	073			
78	Hematite	Tilted	792	817
	074		077	
79	Hematite	Tilted	877	904
	075			

80	Hematite	Flat	1035	1067
	076			
81	Hematite	Flat	1027	1059
	076			
82	Hematite	Flat	1055	1088
	076			
83	Hematite	Flat	1015	1047
	077			
84	Hematite	Flat	1023	1055
	078			
85	Hematite	Flat	1057	1090
	079			
86	Hematite	Flat	1044	1077
	080			
87	Hematite	Flat	1105	1139
	081			
88	Hematite	Tilted	867	894
	082			
89	Hematite	Tilted	710	732
	083			
90	Hematite	Tilted	832	858
	084			
91	Hematite	Flat	873	900
	085			
92	Hematite	Tilted	784	808

	086			
93	Hematite 087	Tilted	743	766
94	Hematite 088	Flat	793	818
95	Hematite 089	Tilted and Sunk	403	416
96	Hematite 090	Tilted	615	634
97	Hematite 091	Flat	867	894
98	Hematite 092	Tilted	801	826
99	Hematite 093	Flat	1017	1049
100	Hematite 094	Flat	1081	1115

Table 1. Tabulated SEM image analysis of particles trapped in PDMS after being assembled

 at a hexadecane-water interface.

The individual SEM files can be obtained from the authors upon request by email, or via http://www.bonlab.info

References

_[1] T. Sugimoto, M. M. Khan, A. Muramatsu, Coll. Surf. A. 2993, 70, 167.

_[2] J. de Graaf, M. Dijkstra, R. van Roij, *Phys. Rev. E.* **2009**, 80, 1.

[3] E. Weinan, R. Weiqing, E. Vanden-Eijneden, J. Chem. Phys, 2007, 126, 164103.