Electronic Supporting Information

Fig.S1[†]. Chemical Structure of HMI and InutecN25:

Names	Structure	Characteristics
InutecN25		Inulin extracted from chicory roots with a mean degree of polymerisation (DP) of 25 Supplied by Orafti BBC
InutecSP1	$HO = \begin{pmatrix} OH \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO \\ HO$	Commercial inulin based surfactant with dodecyl carbamate modification Supplied by Orafti BBC
InEC8	$HO \xrightarrow{OH}_{HO} \xrightarrow{OH}_{OH}_{HO} \xrightarrow{OH}_{OH}_{X}$ $HO \xrightarrow{OH}_{HO} \xrightarrow{OH}_{OH} \xrightarrow{OH}_{Y} \xrightarrow{OH}_{HO} \xrightarrow{OH}_{OH}_{HO} \xrightarrow{OH}_{OH}_{HO} \xrightarrow{OH}_{HO} \xrightarrow{OH}_{HO}_{HO} \xrightarrow{OH}_{HO}_{HO} \xrightarrow{OH}_{HO}_{HO}_{HO} \xrightarrow{OH}_{HO}_{HO}_{H} \xrightarrow{OH}_{Y} \xrightarrow{CH_3}_{y}$ $x+y\sim 25$	Synthesised inulin based surfactant with β-hydroxyoctyl modification DS: 0.18
InEC12	$HO \xrightarrow{OH} OH \left[HO \xrightarrow{OH} OH \right]_{X}$ $HO \xrightarrow{OH} OH \left[HO \xrightarrow{OH} OH \right]_{X}$ $HO \xrightarrow{OH} OH \left[OH \xrightarrow{OH} OH \right]_{X}$ $HO \xrightarrow{OH} OH \xrightarrow{OH} OH \xrightarrow{OH} OH \xrightarrow{OH} OH \xrightarrow{OH} OH \xrightarrow{OH} OH$ y $x+y~25$	Synthesised inulin based surfactant with β-hydroxydodecyl modification DS: 0.12

Fig.S2[†]. Surface tension evolution with time as a function of InEC8 concentration. An exponential decay for each concentration is represented by lines. The maximum drift appears at 18 μ M with a reduction of about 20 mNm-1 after more than two hours.

	Compounds					
Parameter	Inulin	InEC8	InEC12	InEC14	InutecSp1	
Ra=Rb/ nm	1.99	1.34	1.87	2.04	2.18	
Rc/ nm	0.38	1.34	1.13	1.13	2.18	
Rg /nm		1.5	3.3	4.2	1.02	
Nagg	1.2	9	15	16	43	
Am/nm ²		2.5	2.02	2.03	1.39	
Ac/nm ²		0.51	0.63	0.67	0.57	
Lmax/nm		1.05	1.54	1.80	1.80	
χ^2 red	2.7	1.05	2.6	3.7	1.21	

Table S1[†]. Derived parameters* for oblate ellipsoids with Gaussian chains.

**Ra*, *Rb* and *Rc* are the three radii of the ellipsoids, *Rg* the gyration radii of the attached chains, *Nagg* the aggregation number, *Am* the area per molecule at the surface of the ellipsoid, *Ac* area per hydrophobic chain at the surface of the ellipsoid, *Lmax* the maximum length of fully extended hydrocarbon chain and χ^2_{red} reduced chi squared.

Fig.S3[†]. Zimm Plot of InEC14 in aqueous solution.

Fig.S4^{\dagger}. Intensity as a function of dispersion vector modulus q of inulin precipitate as a function of temperature from 25°C to 85°C. The curves have been smoothed and normalized to the background supernatant curve.

Fig.S5^{\dagger}. Percentage degree of crystallinity of inulin precipitate as a function of temperature, the degree at 25 °C has been set arbitrarily to 100%. The arrow shows the cooling behaviour after two hour cooling.

Fig.S5[†]. Simulated scattering curves at two compactions for aggregates corresponding to the precipitated inulin. The lower concentration corresponds to random compaction produced by a hard sphere potential with the larger ellipsoid radius as the hard sphere radius while the higher concentration corresponds to the treatment of a "hard ellipsoid" potential.

Fig.S6[†]. Sketch of the formation of flocks constituted by aggregates (ellipsoids) using a hard sphere potential (left) or a hard ellipsoid potential (right).