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1. Surface Energies
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The surface energies per unit area associated with the different interfaces are
γss (substrate–sheet), γ

(sub)
sv

(substrate–vapour) and γ(sheet)
sv

(sheet–vapour). For the
unbuckled state (see figure 1) the total energy is

E(0) = γssl + γ(sub)

sv (lsub − l), (1.1)

where l and lsub are the lengths of the sheet and substrate, respectively.
We compare this energy with that of a sheet whose ends are first confined by

bringing them a distance ∆l together. In this case both l and lsub remain con-
stant but sheet–vapour and substrate–vapour surfaces of length lb are created, and
a substrate–sheet surface over the same distance is lost. The total post-buckling
surface energy is therefore written as

E(1) = γss(l − lb) + γ(sheet)

sv lb + γ(sub)

sv [lsub − (l − lb)] (1.2)

We take E(0) as the zero energy state, so that the change in surface energy for the
buckled configuration is:

∆E = E(1) − E(0) = −lb(γss − γ(sheet)

sv
− γ(sub)

sv
) ≡ lb∆γ, (1.3)

where ∆γ = γ(sheet)
sv

+γ(sub)
sv

−γss, which we expect to be positive since we anticipate
that deadhering costs energy.

For the case of a compressible substrate, in which the ends of the sheet remain
fixed with respect to the substrate, it is important to note that an amount of
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2 T.J.W. Wagner and D. Vella

substrate–vapour surface of length ∆l is lost in compression. In this case, the energy
change from flat to buckled states is given by

∆E = lb∆γ −∆lγ(sub)

sv
. (1.4)

For the approach presented in the main text to be appropriate, therefore, we must
have that ∆l/lb ≪ ∆γ/γ(sub)

sv
. We anticipate that for adhesion dominated situations,

we should have γss ≫ γ(sub)
sv , γ(sheet)

sv and hence this requirement is satisfied whilst
also allowing ∆l/lb = O(1). In this scenario, it is therefore legitimate to take ∆E ≃
lb∆γ ≃ lbγss.

2. The relative importance of Gravity and Adhesion

The heavy elastica equation may be written as (Vella et al., 2009)

Bθss = −T sin θ + ρgh(lb/2− s) cos θ. (2.1)

We non-dimensionalize lengths by ℓec = (B/∆γ)1/2 (i.e. L = lb/ℓec, S = s/ℓec)
and rewrite (2.1) as

θSS = −τ sin θ +
ρghlb
∆γ

(
1
2 − S/L

)
cos θ, (2.2)

where τ = T/∆γ. We further define the parameter ǫ as

ǫ ≡ ρghlb/∆γ (2.3)

ǫ is thus a measure for the relative strengths of gravitation and adhesion. In systems
where ǫ ≪ 1, the last term in (2.1) may be neglected so that we recover the elastica
equation

θSS = −τ sin θ, (2.4)

which corresponds to (2) in the main text.
The values for ǫ in the experiments range from ǫ1 ≈ 0.03 (for the adhesive

tape, ρ1 ≈ 650 kg/m3, ∆γ1 = 0.25, lb1 = 2.3 cm, h1 = 52 µm) to ǫ4 ≈ 0.15 (for
non-adhesive tape, ρ4 ≈ 600 kg/m3, ∆γ4 = 0.13, lb4 = 5.0 cm, h4 = 70 µm) and
thus largely satisfy the requirement ǫ ≪ 1. [It is clear that the finite weight of the
sheet does have a small effect, since the loss of symmetry for highly compressed
states (bottom right of figure 2 in the main text) cannot be explained without
additional terms in the elastica equation.] For flexible electronic applications ǫ will
be significantly smaller than 1.

3. The elastocapillary curvature condition

In this section we present a derivation of the boundary condition (3) of the main
paper. This derivation is based on the approach taken by Majidi (2007).

We write the total free energy, (1) of the main manuscript, as:

U =

∫ lb/2

−lb/2

(
1
2Bθ2s +∆γ

)
ds− α

[

lb −∆l −
∫ lb/2

−lb/2

cos θ ds
]

.
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The Sticky Elastica 3

As in the main text, this energy can be conveniently non-dimensionalized by taking

a = α/∆γ, U = U/lb∆γ, S = s/ℓec, L = lb/ℓec. (3.1)

We further require symmetry around 0, such that
∫ L/2

−L/2
dS → 2

∫ L/2

0
dS. The

energy then takes the dimensionless form

U = 2

∫ L/2

0

(
1
2θ

2
S + 1

)
dS + a

[

L−∆L− 2

∫ L/2

0

cos θ dS.
]

(3.2)

We are interested in finding the shape θ, blister size L and Lagrange multiplier
a that minimize the total energy U . By letting

θ → θ + δθ, L → L+ δL, a → a+ δa, (3.3)

we find, at first order that

δU = 2 [δθ θS ]
(L+δL)/2
0 + 2

∫ L/2

0

δθ
{

− θSS + a sin θ
}

dS (3.4)

+ δa
{

L−∆L− 2

∫ L/2

0

cos θ dS
}

+ δL a+ 2

∫ (L+δL)/2

L/2

(
1
2 θ

2
S + 1− a cos θ

)
dS.

The first term reduces to 2 [δθ θS ]
(L+δL)/2
0 = −δL θS(L/2)

2, giving after simplify-
ing:

δU = 2

∫ L/2

0

δθ

{

− θSS + a sin θ

}

dS + δa

{

L−∆L− 2

∫ L/2

0

cos θ

}

dS

+ δL

{

1− 1

2
θS(L/2)

2

}

. (3.5)

For an extremum of U we require that δU/δθ = δU/δa = δU/δL = 0. The first of
these results in the classical Elastica equation

θSS = a sin θ. (3.6)

From this we will define the dimensionless stress in the sheet as τ = −a (see main
text). The second term presents the inextensibility constraint

L−∆L =

∫ L/2

−L/2

cos θ dS, (3.7)

whereas the δL variation yields the delamination boundary condition

θS(L/2) =
√
2, (3.8)

which is (3) of the main text.

4. Asymptotic Considerations

We are interested in the behaviour of blister heights and widths in the small com-
pression limit, ∆L ≪ 1. We proceed by first finding expressions in terms of θ0 up to
second order. Subsequently, the relations δ(∆L), λ(∆L) are established by deriving
the asymptotic dependence θ0(∆L).
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4 T.J.W. Wagner and D. Vella

(a) Dimensions of Blister, as Function of Maximum Angle θ0

The height of the blister is given by

δ =

∫ 0

−L/2

sin θ dS = 23/2(1− cos θ0), (4.1)

which may be expanded to give

δ(θ0) ≃
√
2θ20 − θ40/6

√
2. (4.2)

The width of the blister is given by

λ = 2

∫ L/2

0

cos θ dS. (4.3)

We take dS = dθ/θS and make use of (5) to rewrite this as

λ = 23/2(1− cos θ0)
1/2

∫ θ0

0

cos θ√
cos θ − cos θ0

dθ

︸ ︷︷ ︸

I(θ0)

. (4.4)

Substituting u = sin θ/ sin θ0, du = dθ(sin θ0/(1−u2 sin2 θ0)
1/2) and approximating

(1 − u2 sin2 θ0)
1/2 ≃ 1−

1

2
u2 sin2 θ0 −

1

8
u4 sin4 θ0, (4.5)

cos θ0 ≃ 1− 1

2
sin2 θ0 −

1

8
sin4 θ0, (4.6)

results in the following integral:

I(θ0) ≃
√
2

∫ 1

0

1
√
1− u2

√

1 +
(
sin θ0

2

)2
(1 + u2)

du. (4.7)

Approximating 1/[1 + ( sin θ0
2 )2(1 + u2)]1/2 ≃ 1− 1

2 (
sin θ0

2 )2(1 + u2) and integrating

gives I(θ0) = (π/
√
2)− (3π/16

√
2) sin2 θ0. Expanding sin2 θ0 around 0 yields:

I(θ0) =
π√
2
− 3π

16
√
2
θ20 + ... . (4.8)

Substituting this result into (4.4) gives the final answer for the blister width:

λ(θ0) =
√
2πθ0 −

11π

24
√
2
θ30 + ... . (4.9)

(b) Dimensions of Blister as Functions of Compression ∆L

The compression is known to be related to the maximum angle by

∆L = 4

∫ L/4

0

(1− cos θ)dS = 23/2(1− cos θ0)
1/2

∫ θ0

0

1− cos θ√
cos θ − cos θ0

dθ, (4.10)
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The Sticky Elastica 5

where we have again made use of dS = dθ/θS . This can be shown to integrate to

∆L = 25/2(1 − cos θ0)

[

F

(
θ0
2
, csc2

θ0
2

)

− E

(
θ0
2
, csc2

θ0
2

)]

, (4.11)

where F (...) and E(...) are the Incomplete Elliptic Integrals of the First and Second
kind, respectively, which are defined as

F (φ, q) =

∫ φ

0

(
1− q sin2 θ

)
−1/2

dθ,

E(φ, q) =

∫ φ

0

(
1− q sin2 θ

)1/2
dθ.

Using procedures analogous to the one in the previous section we find the fol-
lowing asymptotic approximations for the elliptical integrals:

F

(
θ0
2
, csc2

θ0
2

)

≃ π

4

(

θ0 +
θ30
48

+
23

15360
θ50 + ...

)

, (4.12)

E

(
θ0
2
, csc2

θ0
2

)

≃ π

8

(

θ0 −
θ30
96

− 7

15360
θ50 − ...

)

. (4.13)

Substituting this into (4.11) and simplifying gives to second order:

∆L ≃ π

2
√
2

(

θ30 −
1

32
θ50

)

. (4.14)

Being interested in the dependence θ0 = θ0(∆L), we assume a power series of the
form:

θ0 =

(

2
√
2

π
∆L

)1/3

+ α2∆L2/3 + α3∆L+ ... , (4.15)

and choose the coefficients α2, α3 to satisfy (4.14). We find α2 = 0, α3 = 1/24π to
give

θ0(∆L) ≃
√
2

(
∆L

π

)1/3

+
1

24
√
2

(
∆L

π

)

. (4.16)

Substituting this into the asymptotic expressions for λ(θ0) and δ(θ0) produces the
following results (see (9) and (10)):

δ = 2
√
2

(
∆L

π

)2/3

− 1

2
√
2

(
∆L

π

)4/3

+ ... , (4.17)

λ = 2π2/3∆L1/3 − 7

8
∆L+ ... . (4.18)
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6 T.J.W. Wagner and D. Vella

(c) Typical Curvature vs Aspect Ratio

We are further interested in the typical curvature as a function of the aspect
ratio. To this end we write, from (4.2) and (4.9):

δ

λ
=

θ0
π

+
7

48π
θ30 + ... (4.19)

and the typical curvature is written as

δ

λ2
=

1√
2π2

+
3

8
√
2π2

θ20 + ... (4.20)

Analogously to above we pose the power series expansion

θ0 = πδ/λ+ α2(δ/λ)
2 + α3(δ/λ)

3 + ... (4.21)

and choose the coefficients α2, α3 etc. to satisfy (4.19). We find that α2 = 0, α3 =
−(7/48)π3. Substituting (4.21) into (4.20) finally gives (11)

δ

λ2
=

1√
2π2

+
3

8
√
2

(
δ

λ

)2

− ...
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