| 1        | The Effect of Electric Fields on Bacterial Attachment to |
|----------|----------------------------------------------------------|
| 2        | Conductive Surfaces                                      |
| 3        |                                                          |
| 4        | Itai Gall, Moshe Herzberg, Yoram Oren*                   |
| 5        |                                                          |
| 6        |                                                          |
| 7        | Zuckerberg Institute for Water Research,                 |
| 8        | Ben-Gurion University of the Negev,                      |
| 9        | Sede Boqer 84990, ISRAEL                                 |
| 10       |                                                          |
| 11       |                                                          |
| 12       |                                                          |
| 13       | Supplementary Material                                   |
| 14       |                                                          |
| 15       |                                                          |
| 16       |                                                          |
| 17       |                                                          |
| 18       | Revised version Submitted                                |
| 19       | to <i>Soft Matter</i> on December 7 <sup>th</sup> , 2012 |
| 20       |                                                          |
| 21       |                                                          |
| 22       |                                                          |
| 23       |                                                          |
| 24       |                                                          |
| 25<br>26 | * Corresponding author: voramo@bgu ac il                 |
| 20       | conceptioning aution. yoranio@bgu.ac.n                   |
| 21       |                                                          |

1



## 2

Figure 1S: Growth curve experiment for Pseudomonas fluorescens - The optical density at 600 3

nm was measured by use of a spectrophotometer (Lambda EZ201) and plotted against elapsed time. The experiment covers the lag phase (until the 2<sup>nd</sup> hour), the exponential phase (until the 8<sup>th</sup> 4

5

hour) and the beginning of the stationary phase of the bacterial growth cycle (after 8 hours). 6

Each data point is an average reading taken from three independent cultures. The error bars are 7

not visible since standard deviations were comparatively low. 8



4 5

6 Figure 2S: Hydrophobicity for P. fluorescens measured by the MATH protocol. Measurement

7 parameters and partitioning percentages are mentioned in the legend and above the bars

8 respectively. The error bars represent one standard deviation.



Figure 3S: Zeta potentials of P. fluorescens cells for different ionic strengths and pH of sodium
sulfate solutions. The error bars represent one standard deviation of nine independent readings.



3

4 **Figure 4S:** : Bacterial density vs. frequency shift - at the end of four sample experiments and

5 their repetition experiments, the sensor was photographed beneath a fluorescence microscope.

6 The cell signals were counted, normalized by the area of the sensor to obtain the cell density and

7 correlated to the measured final frequency shift. The standard deviations represent the data from

8 three different photographs per experiment.



- 2
- 3 4 5

6 Figure 5S: Monitoring of the dissipation factor in QCMD experiments at different constant

7 electric potentials (chronoamperometry). Electrical current measurements are not shown. Each

8 experiment started at time index 80 minutes (x-axis). Before that time index, control experiments were carried out with pure electrolyte solution. 9

10



- **Figure 6S:** Schematic view of the parallel plate flow-cell containing a working electrode (W) and a
- 4 transparent ITO as an auxiliary (Ax) electrode used also as a reference (R).