
Supplementary Information 

Materials and Methods 

Protein purification (FPLC) 

The stock solution, typically with ~ 20 mg/ml of polyclonal sheep Immunoglobin G 

(abbreviated as IgG, Rockland Immunochemicals) was further purified. The solution was passed 

through a fast protein liquid chromatography column (GE Healthcare HiLoad 16/60 Superdex 

200 pg) using a buffer at pH 7 (100 mM phosphate and 300 mM NaCl) as the mobile phase. The 

monomer fractions observed with absorbance at 280 nm were collected and pooled, and the 

oligomers were discarded. 

Buffer exchange 

After the FPLC purification step, the ~4 mg/ml solution of polyclonal sheep IgG was 

buffer exchanged into 50 mM phosphate buffer with the desired amount of dissolved trehalose 

(typically 70-125 mg/ml). The buffer was formulated at the isoelectric point (pI) of the protein, 

which is 6.4 for the polyclonal sheep IgG. The buffer exchange was carried out using centrifugal 

filter tubes (Millipore, Amicon Ultracell 30K centrifugal filters) with a molecular weight cutoff 

of 30 kDa and a capacity of 12 ml. A desired amount (typically 6-8 ml) of the protein solution 

was added to the filter tube and the volume was increased to 12 ml using the desired buffer for 

the dispersion. The buffer was forced through the membrane by centrifugal filtration at 4500 

radial centrifugal force (rcf) for 12 minutes concentrating the protein solution in the retentate 

until the solution volume dropped to about 2 ml. Then the retentate protein solution was again 

diluted to 12 ml in the same buffer as before and concentrated down to 2 ml again. The dilution 

and centrifugation process was repeated 4 or more times until the permeate volume was 4-5 

times the original solution volume, typically 40 ml. After buffer exchange, the solution was 

further concentrated so that the final solution volume was about 0.5 ml. 

Centrifugal filtration of protein solution to form a dispersion of nanoclusters upon 

concentration 

Tare weights were taken of a centrifugal filter assembly (Millipore Microcon, Ultracel YM-50 

membrane, 50 kDa nominal molecular weight limit, diameter of filter, 0.25”). The desired 
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volume (~0.5 ml) of protein solution, after buffer exchange and concentration, was pipetted into 

the retentate chamber. The filter assembly was then centrifuged (Eppendorf Centrifuge 5415D) 

at 10,000 rcf  typically in about 20-40 minute increments until the calculated final retentate 

volume for the desired final protein concentration was reached. The volume measurements were 

done using image analysis (ImageJ software) to determine the height of the liquid column in the 

retentate chamber. Additionally, the protein concentration in the retentate dispersion was 

determined by measuring out 2 μl (± 0.08 μl) of dispersion using an Eppendorf Research 

adjustable volume 0.5-10 μl pipette and diluting it into a receiving vessel containing 998 μl of 

the same buffer.  For mixing, the solution was cycled 5 times into and back out of the pipette tip 

followed by light agitation with the pipette tip. The absorbance of the resulting solution at 280 

nm was measured using a Cary 3E uv-visible spectrophotometer in a cuvette (Hellma cells) with 

a path length of 1 cm, and converted to concentration assuming an extinction coefficient of 1.43 

ml mg-1 cm-1. 

Once the desired concentration had been reached, the dispersion of protein nanoclusters 

in the retentate chamber was recovered by inverting the filter assembly into a retentate recovery 

tube, and centrifuging it for 3-4 minutes at 1,000 rcf. The resulting dispersion was transferred to 

a 0.1 mL conical vial (V-Vial, Wheaton), and the concentration was confirmed using 2μl of the 

dispersion as described above. 

Characterization of the protein nanocluster dispersion 

Hydrodynamic diameters 

The short-time mutual diffusion coefficient Ds(q) of protein nanoclusters was extracted 

from intensity correlation functions measured using dynamic light scattering. Measurements 

were taken at angle of 150° with a 632.8 nm laser (q = 0.01918 nm-1) and an avalanche 

photodiode at ~23°C using a custom apparatus (Brookhaven BI-9000AT and 60 µl Beckman 

Coulter sample cell)1 and analyzed with the CONTIN algorithm (volume distribution). 

Hydrodynamic cluster diameters Dc were estimated from the Ds(q) using Beenakker-Mazur 

theory2 for Ds(q)/ D0, where D0 = kT / 3πηDc  and η is the shear viscosity of the buffer solvent 

with added excipients. This approach assumes that the protein clusters act like suspended hard 

spheres occupying an effective packing fraction eff / int, where int is the protein packing 
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fraction within a cluster. In this work, we assumed  int 0.60, which is consistent with light 

scattering data on protein nanoclusters reported previously.1 We also verified that an alternative 

approximation, int /2  (where  is the fractal dimension, taken as 2.6),1 resulted in 

similar cluster size estimates. The measured intensity correlation functions decayed on time 

scales between ~10 to 50 s, consistent with short-time diffusion for clusters with the diameters 

and mobilities reported here. 

Size exclusion chromatography 

  For analysis of non-covalent aggregates, the sample was diluted in mobile phase (100 

mM sodium phosphate, 300 mM sodium chloride, pH 7) to ~1 mg/ml. 20 μg of diluted 

dispersion was analyzed with a Waters Breeze HPLC, using TOSOH Biosciences 

TSKgel3000SWXL and TSKgel2000SW columns in series, with eluate monitored by absorbance 

at 214 nm. 

Enzyme linked immunosorbent assay (ELISA) 

An enzyme-linked immunosorbent assay (ELISA) was performed by coating a 96-well 

Costar high binding polystyrene plate with anti-polyclonal sheep IgG (Sigma) in PBS at 1 g/ml 

at 4°C overnight. The sheep IgG samples were serially diluted in a 1:5 ratio starting at 10 g/ml. 

The plate was then blocked with 5% milk in PBS for two hours at room temperature.  Bound IgG 

was detected with anti-polyclonal sheep IgG conjugated with horseradish peroxidase (Sigma) in 

PBS added to each well in a 1:5000 ratio. The signal was developed with a TMB solution 

(Thermo Scientific) and the reaction was quenched with 1N HCl. The signal was detected using 

a spectrophotometer (Molecular Devices Spectramax M5) at an absorbance of 450 nm. The data 

was fit to a four parameter logistic curve (MATLAB nonlinear curve fitting) and the half 

maximal effective concentration (EC50) reported. 

Circular dicroism (CD) 

Secondary structure was determined by diluting the dispersions to approximately 10 

mg/ml in 5 mM phosphate buffer at pH 7.4. The samples were then placed in the JASCO J-815 

circular dichroism (CD) spectrometer and the CD spectrum was measured from 260 nm to 190 
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nm. Data was analyzed with Dichroweb online analysis tool, using the CDSSTR function and 

reference set 4.3 

Viscosity 

The viscosities of the nanocluster dispersions were measured in triplicate using a 25 

gauge (ID = 0.1 mm) 1.5” long needle (Becton Dickinson & Co. Precision Glide Needle) 

attached to a 1 ml syringe (Becton Dickinson & Co. 1 mL syringe with Luer-Lok™ tip), 

according to the Hagen-Poiseuille equation.1 The flow rate of the dispersion through the needle 

was determined by correlating volume to the height of the liquid in the conical vial (using 

ImageJ software) and measuring the time taken for the dispersion column height to move 

between two points. The flow rate was correlated to viscosity from a calibration curve derived 

from a set of standards of known viscosities.1  

Equilibrium model for cluster formation 

The model we use here is based on an approach originally introduced to qualitatively 

understand cluster formation of colloids suspended in apolar solvents.10, 11 Specifically, we adopt 

a generalization put forth by Johnston et al.1 to study aqueous, protein nanocluster dispersions 

which accounts for the fractal dimension of the clusters and the possibility of tunable depletion 

interactions. 

The model assumes a hierarchy of multi-scale interactions that drive the formation of 

clusters shown schematically in Fig. 1a. Here, the primary attraction between protein monomers 

is assumed to be an osmotic depletion force induced by the presence of an extrinsic crowding co-

solute (in this case, trehalose). The origin of the depletion attraction is entropic. Configurations 

where two protein molecules are in contact are favored statistically over those in which the 

proteins are separated in solution because the former excludes trehalose molecules from a 

smaller overall volume. Since the diameter of a trehalose molecule is considerably smaller than 

that of a protein monomer, the interprotein depletion interaction is short-ranged. This kind of 

depletion attraction is commonly described by the Asakura-Oosawa effective pair potential4,5  
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where r is the center to center distance between two protein molecules, R is the protein molecular 

radius, ϕE is the volume fraction of the extrinsic crowder, and RE is the crowder radius.6  Since 

the strength of the depletion attraction depends on ϕE  (as is expected for an osmotic attraction), it 

can be tuned experimentally by modifying the crowder concentration. Depletion attraction due to 

poly(ethylene glycol) (PEG) has been demonstrated as being the dominant interaction 

modulating protein-protein interactions for proteins with weakened electrostatic interactions.7-11 

As a result, other short-range attractive interactions arising from hydrogen-bonding, hydrophobic 

forces, etc., as well as longer-range van der Waals interactions—while also present in the protein 

system—are assumed to play a secondary role in cluster formation at high crowder 

concentrations.1  

Proteins also interact through electrostatic repulsions. In this work, the pH of the solution 

is adjusted to be near the pI of the protein which minimizes the net charge on the protein 

molecules.12  As a result, electrostatic repulsions between two isolated protein monomers in 

solution are expected to be weak compared to the short-range attractions, especially under 

conditions of high crowder concentration (see Fig S7). However, as proteins begin to form a 

cluster (i.e., each protein acquires multiple contacting neighbors), contributions from the weak—

but longer-range—electrostatic repulsions begin to accumulate. Qualitatively, the balance 

between attractions and repulsions determines the equilibrium cluster size. For a discussion of 

why electrostatic screening inside of the protein clusters may be considerably weaker than that 

between two proteins isolated in aqueous buffer, see Harada et al13 and Johnston et al.1 The 

aforementioned balance between short-range attractions and longer-range repulsions is expected 

to produce interactions between equilibrium-size clusters that are net repulsive, which helps 

create colloidally-stable nanocluster dispersions that do not readily gel.  
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translational and combinatorial entropy of counterion dissociation accounting for the 

experimentally determined partial molar density of the protein in the solution of 1400 mg/ml. 

Here,  is the number of dissociable sites on a protein surface, and b is the minimum distance 

between a counterion and a charge on the protein surface. Combining these relations and eq. S1, 

S6, and S7 with E = cE/1580 (1580 is the partial molar density of the trehalose in the solution16) 

yields the following relation for cluster diameter,  

2
20 2 /

1400 ∗ 1580 ∗ 9 1
1

3
2

 
(S8)

 

This relation is presented, in simplified form, as eq. (2) of the main text. Importantly, Equation 

S8 (parameter values provided in Table S6) captures the experimentally observed trends in 

cluster diameter with changes in extrinsic crowder concentration and protein concentration (Figs 

2a-e). This agreement provides further evidence that the dispersed protein clusters are in an 

equilibrium state. 

Table S1: Model parameters for Sheep IgG. Input variables used in the model proposed by 
Johnston et al.1  and used to generate the plots in Figs 1b, 2b, and 2e are provided.  

 

Turbidity and additional electron microscopy of the dispersion 

 The turbidity of the dispersion is quantified in Fig. S1 in the visible range (400-700 nm). 

Low turbidity is seen in the visible region as quantified by an average turbidity of 0.335 cm-1 and 

absorbance of 0.15 for a path length of 1 cm from 400-700 nm. The dispersion appears 

Model parameter Value  

Fractal Dimension (δf) 2.5 

Dielectric constant (Єr) 15 

No. of dissociable sites per unit area of colloid surface (σs, nm-2) 0.2 

Distance between opposite charges in an ionic bond (b, nm) 0.22 

Radius of the protein monomer (R, nm) 5.5 
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transparent to the naked eye, which is highly desirable as a guide during subcutaneous 

administration of the formulation. The high level of transparency is due to the refractive index of 

the porous cluster being close to that of the solvent with dissolved trehalose.1 Also, the small size 

of the clusters < 100 nm leads to relatively low scattering cross sections. The dispersion has a 

significant absorbance in the UV region due to the aromatic amino acid residues present in the 

protein molecules and greater Mie scattering.  

 

Figure S2: Turbidity of nanocluster dispersion (C 220:70) which appears transparent to 
the naked eye for a path length of 1 cm.   
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polyclonal has a broader distribution of pIs and hence charge on the protein molecules therefore 

the charge distribution within the clusters may remain oblivious to pH over a significant range of 

pH values (2-3 pH units around the pI). These cluster formed at pH 6.9 also dissociated back to 

monomer upon dilution in buffer. 

Table S6: Effect of pH on Dc. LD 200:80 in pH 6.9 and a dilution of LD 250:100 at pH 6.4 are 
contrasted to observe the effect of protein charge. 

Sample name cE 
(mg/ml) 

c 
(mg/ml) 

dispersion 
pH 

Dc 
(nm) 

Std. Dev in Dc 
(nm) 

Dilution of LD 
250:100 

84 210 6.4 32 5 

LD 200:80 80 200 6.9 33 10 

 

ELISA  

After analysis of the ELISA data with a four-parameter logistic fit, the relative EC50s 

were found to be 1.38 ± 0.47 for the LD250:100 sample and 1.13 ±  0.84 for the C 220:70 

sample, compared with 1.00 ± 0.36 for the unprocessed sample.  After verifying the shape of the 

sigmoidal curve on the Fig. S8, these were determined to be comparable within one standard 

deviation. Since this is a capture ELISA using polyclonal antibody mixtures to both capture and 

detect the sheep IgG molecules, binding depends upon maintenance of multiple epitopes in the 

sheep antibody structure. If one epitope on each antibody has altered structure, binding would be 

reduced; alternatively, if a fraction of all antibodies have multiple compromised epitopes, this 

would also result in decreased binding and higher EC50 values. We thus conclude that the 

majority of the antigen binding sites are maintained during the centrifugation and lyophilization 

steps, keeping the protein stable and intact. 
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Table S8: Dc, viscosity and protein % monomer before and after freezing and thawing (C 
220:70). The distributions for the Dcs are provided in Fig S9. This was the same dispersion as in 
Fig. S1. 

State  Viscosity 
(cP) 

Intrinsic 
Viscosity 

Dc 
(nm) 

Std. Dev. in Dc 
(nm) 

% Monomer by 
SEC 

Pre-freezing   36±9 9 36 9 98.6 

Post-
freezing (1 
month)  

35 9 31 10 * 

Post-
freezing (2 
½ month 

- - 39 5 99.5 

 

 

Sterile filtration of the clusters 

A nanocluster dispersion were passed through a 0.22 micron filter membrane with ~220 

mg/ml sheep IgG and 70 mg/ml trehalose as shown in Table S9 and Fig. S10. The dispersion 

properties including concentration of protein, viscosity and nanocluster size were retained after 

sterile filtration of the dispersion. The viscosity of the dispersion and the nanocluster size (36 

nm) were low enough for sterile filtration to be feasible, which would be desirable for 

biopharmaceutical processing. Due to the large initial volume needed for filtration, the entire 

concentration process was carried out in a Millipore Amicon filter (used for buffer exchange as 

described in the materials and methods section).  
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