Supporting Information

From Self-assembly of Electrospun NanoFibers to 3D cm-thick Hierarchical Foams

Deepak Ahirwal^{a,b}, Anne Hébraud^a, Roland Kádár^b, Manfred Wilhelm^b and Guy Schlatter^{a,*}

^aLaboratoire d'Ingénierie des Polymères pour les Hautes Technologies, LIPHT EAC 4379 – convention CNRS, Institut Carnot MICA, Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France ^bKarlsruhe Institute of Technology (KIT), Department of Chemistry and Bioscience, Institute of Chemical Technology and Polymerchemistry, Engesserstr. 18, 76131 Karlsruhe, German

Complementary pictures of dynamic self-assembling

Figure S1: Electrospun scaffold morphologies at different deposition time t obtained with PCL concentration at 13% wt, $V_{needle} = 10 \text{ kV}$ and $V_{collector} = -10 \text{ kV}$

First moments of electrospinning in the case of elongated beaded fibres

Figure S2: [a] SEM picture showing the very first moments (10 s) of the deposition of irregular electrospun nanofibres with elongated beads obtained with PCL concentration at 13% wt, V_{needle} = 10 kV and $V_{collector}$ = -10 kV. Region 1 shows the aggregation of thick fibre domains whereas only thin fibres cover the region 2. [b] Monte-Carlo simulation of previous picture showing the aggregation of thick fibre domains after a random deposition of 150 fibres with characteristic length L_{thick} = 70 µm and L_{thin} = 800 µm. [c] Schematic section of a heterogeneous fibre deposited on the collector.