Supporting Information

From Self-assembly of Electrospun NanoFibers to 3D cm-thick Hierarchical Foams

Deepak Ahirwala,b, Anne Hébrauda, Roland Kádárb, Manfred Wilhelmb and Guy Schlattera,*

aLaboratoire d’Ingénierie des Polymères pour les Hautes Technologies, LIPHT EAC 4379 – convention CNRS, Institut Carnot MICA, Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France

bKarlsruhe Institute of Technology (KIT), Department of Chemistry and Bioscience, Institute of Chemical Technology and Polymerchemistry, Engesserstr. 18, 76131 Karlsruhe, German
Complementary pictures of dynamic self-assembling

Figure S1: Electrospun scaffold morphologies at different deposition time t obtained with PCL concentration at 13% wt, $V_{\text{needle}} = 10$ kV and $V_{\text{collector}} = -10$ kV
First moments of electrospinning in the case of elongated beaded fibres

Figure S2: [a] SEM picture showing the very first moments (10 s) of the deposition of irregular electrospun nanofibres with elongated beads obtained with PCL concentration at 13% wt, $V_{\text{needle}} = 10$ kV and $V_{\text{collector}} = -10$ kV. Region 1 shows the aggregation of thick fibre domains whereas only thin fibres cover the region 2. [b] Monte-Carlo simulation of previous picture showing the aggregation of thick fibre domains after a random deposition of 150 fibres with characteristic length $L_{\text{thick}} = 70$ µm and $L_{\text{thin}} = 800$ µm. [c] Schematic section of a heterogeneous fibre deposited on the collector.