Theoretical Model

For semiflexible dendrimers the correlation between bond vectors is expressed through the generalized potential V_{s} in the framework of optimized Rouse-Zimm approach

$$
\begin{equation*}
V_{s}\left(\boldsymbol{l}_{i}\right)=\frac{K}{2} \sum_{i} U_{i j} \boldsymbol{l}_{i} \cdot \boldsymbol{l}_{j} \tag{1}
\end{equation*}
$$

where k_{B} is Boltzmann constant, $K=3 k_{B} T / l^{2}$ is spring constant and \boldsymbol{l} bond vector which is expressed as $\boldsymbol{l}_{i}=\boldsymbol{R}_{i}-\boldsymbol{R}_{j}$. Alternatively the bond vector may be expressed in terms of incidence matrix \boldsymbol{G} as $\boldsymbol{l}_{i}=\sum_{k} \boldsymbol{G}_{i k}^{T} \boldsymbol{R}_{k}$. On using this definition we can rewrite eqn. 1

$$
\begin{equation*}
V_{s}\left(\boldsymbol{R}_{i}\right)=\frac{K}{2} \sum_{i}\left(\boldsymbol{G} \cdot \boldsymbol{U} \cdot \boldsymbol{G}^{T}\right)_{i j} \boldsymbol{R}_{i} \cdot \boldsymbol{R}_{j} \tag{2}
\end{equation*}
$$

Here the structure of dendrimers is represented through the connectivity matrix $[\boldsymbol{A}]=$ $\left[\boldsymbol{G} \cdot \boldsymbol{U} \cdot \boldsymbol{G}^{T}\right]$, where the elements of $N \times(N-1)$ incidence matrix, $G_{i j}$ are: $G_{i j}=-1$ if the bond vector, \boldsymbol{l}_{j} starts at i-th bead, $G_{i j}=+1$ if bond vector \boldsymbol{l}_{j} points to i-th bead, and $G_{i j}=0$ otherwise. Semiflexibility is incorporated through the $(N-1) \times(N-1)$ bond correlation matrix \boldsymbol{U} in Eq. 3, whose elements contain the average scalar product of bond vectors and defined as

$$
\begin{equation*}
\left[U^{-1}\right]_{i j}=\frac{\left\langle\boldsymbol{l}_{i} \cdot \boldsymbol{l}_{j}\right\rangle}{l^{2}} \tag{3}
\end{equation*}
$$

The average scalar product of bond vectors, $\left\langle\boldsymbol{l}_{i} \cdot \boldsymbol{l}_{j}\right\rangle$ has been modeled through the normalized spherical harmonics $Y_{l}^{m}(\theta, \phi)$, which incorporate the effect of both direction and orientation of respective bond vectors through angles θ and ϕ respectively. In the spherical harmonics approach the average scalar product of bond vectors is defined as

$$
\begin{align*}
\frac{\left\langle\boldsymbol{l}_{i} \cdot \boldsymbol{l}_{j}\right\rangle}{l^{2}} & = \pm Y_{l}^{m}(\theta, \phi) \\
& = \pm \sqrt{3 / 4 \pi} \sin \theta \cos \phi \tag{4}
\end{align*}
$$

The plus sign denotes for head to tail arrangement of adjacent bonds and the minus sign otherwise. For the non-adjacent bonds, i and k, the shortest topological distance is given by

$$
\begin{equation*}
\left\langle\boldsymbol{l}_{i} \cdot \boldsymbol{l}_{k}\right\rangle=\left\langle\boldsymbol{l}_{i} \cdot \boldsymbol{l}_{j_{1}}\right\rangle \cdot\left\langle\boldsymbol{l}_{j_{1}} \cdot \boldsymbol{l}_{j_{2}}\right\rangle \ldots\left\langle\boldsymbol{l}_{j_{n}} \cdot \boldsymbol{l}_{k}\right\rangle l^{-2 n} \tag{5}
\end{equation*}
$$

where $\left(j_{1}, j_{2}, \ldots j_{n}\right)$ denotes the unique shortest distance between the i-th and k-th bond vectors. From Eq.4, degree of semiflexibility is a function of the bond orientation angle,
ϕ except the case of $\phi=0$ which corresponds to the freely rotating model. The values of ϕ lie between the range $(0, \pi)$, in which ranges between $(0, \pi / 2)$ and $(\pi / 2, \pi)$ represent the conformation and expanded conformations of dendrimers respectively. The angle between adjacent bond vectors, θ, can take any values between 0 to π and the range of this correlation depends on the functionality of branch point of dendrimer, such that $\cos \theta \in\left[0,1 /\left(f_{i}-1\right)\right]$. Dendrimer shows different type of structure behavior in compressed (i.e. $\phi \in(0, \pi / 2))$ and expanded (i.e. $\phi \in(\pi / 2, \pi))$ zones.

