Supporting Information

Structure and Mechanical Response of Protein Hydrogels Reinforced by Block Copolymer Self-Assembly

Matthew J. Glassman and Bradley D. Olsen*

Department of Chemical Engineering, Massachusetts Institute Technology

77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

*Corresponding Author

Bradley D. Olsen

TEL) 1-617-715-4548

Email) bdolsen@mit.edu

Protein	Expected Molar Mass (kDa)	Measured Molar Mass (kDa)			
Proteins with near N- and C-terminal cysteines					
cys-C ₈₀ -cys	67.1	67.2			
cys-C ₂₀ (PC ₂₀) ₂ -cys	61.1	60.9			
cys-C ₁₀ (PC ₁₀) ₄ -cys	63.3	63.2			
cys-C ₁₀ (PC ₁₀) ₂ -cys	37.0	37.0			
Proteins with near C-terminal cysteines					
C ₁₀ (PC ₁₀) ₄ -cys	63.1	63.0			

Table S1: MALDI-TOF of purified proteins

Figure S1: SDS-PAGE of hybrid block copolymers

Figure S2: Gel permeation chromatograph of purified, maleimide-functionalized PNIPAM

Table S2: Effect of concentration on T_t (°C) measured by DSC for gels in 100 mM phosphate, pH = 7.6

Block Copolymer	7.5%	15%	30%
$C_{20}(PC_{20})_2 - 6.4 \text{ kDa}$	32.8	25.4	19.1
$C_{20}(PC_{20})_2 - 19.2 \text{ kDa}$	29.5	26.0	21.1
$C_{20}(PC_{20})_2 - 31.2 \ kDa$	28.2	25.4	22.0

Table S3: Effect of triblock weight fraction (w_t) on T_t ($^{\circ}C$) measured by DSC for 30% (w/v) hydrogels in100 mM phosphate, pH = 7.6

Block Copolymer	0.33	0.43	0.53
C ₁₀ (PC ₁₀) ₄ – 18.4 kDa	32.8	25.4	19.1

SANS Modeling: SANS data were fit to the Percus-Yevick model for disordered hard spheres:

$$I(q) = K \cdot S(q)F(q) + C \tag{1}$$

The structure factor S(q) was computed using the formula:

$$S(q) = \frac{1}{1 + 24 \eta G(2qR)}$$
(2)

$$G(x) = \frac{\alpha}{x^3} (\sin x - x \cos x) + \frac{\beta}{x^4} (2x \sin x + (2 - x^2) \cos x - 2) + \frac{\gamma}{x^6} (-x^4 \cos x + 4[(3x^2 - 6) \cos x + (x^3 - 6x) \sin x + 6])$$
(3)

With the constants:

$$\alpha = \frac{(1+2\eta)^2}{(1-\eta)^4}, \beta = -6\eta \frac{(1+\eta/2)^2}{(1-\eta)^4}, \gamma = \frac{\eta}{2} \frac{(1+2\eta)^2}{(1-\eta)^4}$$
(4)

The form factor was computed for polydisperse spheres:

$$F(q) = \frac{\int P(r) f^2(q, r) dr}{\int P(r) dr}$$
(7)

Where the function f(q,r) for a single sphere is given by:

$$f(q,r) = \frac{4}{3}\pi r^3 \frac{3}{(qr)^3} (\sin qr - qr \cos qr)$$
(8)

And the lognormal probability distribution P(r) has the form:

$$P(r) = \sqrt{2 \,\bar{\sigma}_p^2 \pi} \,\exp\left(\frac{(-\ln r - \bar{r}_o)^2}{2 \,\bar{\sigma}_p^2}\right) \tag{9}$$

The expected value (r_o) and standard deviation (σ_p) of the distribution are computed according to:

$$r_o = \exp\left(\bar{r}_o + \frac{1}{2}\bar{\sigma}_p^2\right)$$
 and $\sigma_p = r_o \sqrt{\exp \bar{\sigma}_p^2 - 1}$

Sample	K	R _{HS} (nm)	η	r _o (nm)	σ _p (nm)	С
C ₈₀ – 6.4 kDa	$2.8E-13 \pm 8.6E-14$	15.28 ± 0.06	0.455 ± 0.005	5.9 ± 0.9	1.5 ± 0.6	0.0096 ± 0.0308
C ₈₀ - 19.2 kDa	$6.8E-13 \pm 8.2E-4$	22.11 ± 0.08	0.439 ± 0.005	12.9 ± 1.0	3.8 ± 0.8	0.0203 ± 0.1239
C ₈₀ - 31.2 kDa	$4.8E-13 \pm 3.9E-4$	25.21 ± 0.10	0.361 ± 0.005	15.8 ± 0.8	3.6 ± 0.6	0.0434 ± 0.1717
$C_{20}(PC_{20})_2 - 6.4 \text{ kDa}$	$3.4\text{E-}12 \pm 1.1\text{e-}12$	15.01 ± 0.07	0.427 ± 0.005	5.7 ± 0.9	1.4 ± 0.5	0.0183 ± 0.0332
C ₂₀ (PC ₂₀) ₂ – 19.2 kDa	$7.3E-13 \pm 7.4E-14$	21.54 ± 0.07	0.432 ± 0.004	12.6 ± 0.7	3.0 ± 0.5	0.0319 ± 0.1018
C ₂₀ (PC ₂₀) ₂ - 31.2 kDa	$4.5E-13 \pm 6.3E-14$	27.21 ± 0.18	0.350 ± 0.008	15.7 ± 1.3	3.8 ± 0.9	0.0707 ± 0.3088
$C_{10}(PC_{10})_4 - 6.4 \text{ kDa}$	$2.7E-12 \pm 3.7E-13$	14.70 ± 0.04	0.395 ± 0.003	6.1 ± 0.4	1.2 ± 0.3	0.0453 ± 0.0131
C ₁₀ (PC ₁₀) ₄ - 19.2 kDa	$7.7E-13 \pm 9.9E-14$	21.87 ± 0.10	0.356 ± 0.005	11.8 ± 0.9	3.1 ± 0.7	0.0484 ± 0.1114
$C_{10}(PC_{10})_4 - 31.2 \text{ kDa}^*$						
$C_{10}(PC_{10})_2 - 6.4 \text{ kDa}$	$1.74E-12 \pm 1.1E-12$	13.34 ± 0.05	0.479 ± 0.005	5.2 ± 1.5	1.7 ±0.9	0.7055 ± 3.5284
C ₁₀ (PC ₁₀) ₂ - 19.2 kDa	$7.4E-13 \pm 5.4E-14$	20.43 ± 0.08	0.354 ± 0.005	13.5 ± 0.6	3.2 ± 0.5	0.0337 ± 0.0952
$C_{10}(PC_{10})_2 - 31.2 \text{ kDa}$	7.1E-13 ± 5.1E-14	22.83 ± 0.11	0.317 ± 0.006	15.1 ± 0.6	3.4 ± 0.5	0.0633 ± 0.1653

Table S4: Percus-Yevick fit parameters to SANS data from 30% (w/v) hydrogels at 35°C.

*Fits not performed on this gel since cylindrical micelles were formed.

Figure S3: Thermal evolution of nanostructure measured by SANS for 30% (w/v) hydrogels with $C_{10}(PC_{10})_4$ midblocks and 18.4 kDa endblocks for (a) $w_t = 0.43$ and (b) $w_t = 0.33$

Figure S4: Percus-Yevick fit parameters for 30% (w/v) $C_{10}(PC_{10})_4$ gels with 18.4 kDa endblocks as a function of triblock weight fraction (w_t).

Figure S5: Temperature sweep linear oscillatory shear rheology showing G' and G'' during heating.

Figure S6: Temperature sweep linear oscillatory shear rheology showing G' upon heating and cooling.

Figure S7: The peak (G'_{peak}) and minimum (G'_{min}) moduli from temperature sweep rheology for 30% (w/v) gels with $C_{10}(PC_{10})_4$ midblocks and 18.4 kDa endblocks, as a function of triblock weight fraction (w_t)