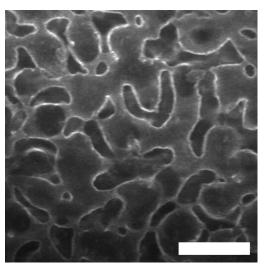

Supplementary Information for


Bijel Reinforcement by Droplet Bridging: a Route to Bicontinuous Materials with Large Domains

Jessica A. Witt, Daniel R. Mumm, Ali Mohraz
Department of Chemical Engineering & Materials Science
University of California, Irvine
Irvine, CA 92697
Email: mohraz@uci.edu

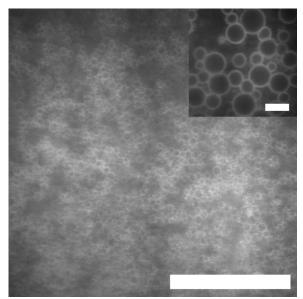

Video SV1. Image series showing the evolution of a critical mixture of NM and EG as it undergoes phase separation. The total size of the image is $1136 \times 1136 \, \mu \text{m}^2$

Figure S1. Measurement of the three-phase contact angle by the immersed droplet method for bridged bijel particles (a) and simple bijel particles (b). The bottom surface is microscope slide that is spin-coated with the silica particles.

Figure S2. Confocal microscopy image of a simple bijel prepared with $\phi = 0.04$. Scale bar denotes 50 μ m

Figure S3. Confocal microscopy images of Pickering emulsions prepared with $\eta = 0.675$ and $\varphi = 0.10$. Scale bars denote 100 μ m for the main image and 10 μ m for the inset.