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A Derivation of equation (8)

The material time constant, λ, is given by 1/(6Dr) [1], where Dr is the rotational diffusion
coefficient. Since Dr = kBT/fr,where fr is the rotational frictional coefficient, kB the
Boltzmann constant and T the temperature, we have

λ =
fr

6kBT
. (A.1)

For a prolate spheroid,
fr = 8πηR3

eFr, (A.2)

where η is the dynamic fluid viscosity, the equivalent radius Re is (ab2)1/3 (a and b are
defined in section 2.1.2), and Fr is the frictional coefficient for rotation around the bth axis
relative to a sphere of radius Re [2]. Combining equations (A.1) and (A.2), we obtain

λ =
4Frπηab

2

3kBT
, (A.3)

which is equation (8).
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B Solving equation (7)

The orientation distribution function, ψ(t), is the solution to the governing Fokker–Planck
equation (equation (7)). By expanding ψ in the basis of spherical harmonics [3], we obtain

ψ(θ, φ, t) =
1

4π

N
∑

n=0

n
∑

m=0

{Am
0n(t)P

m
n (cos θ) cos(mφ) + Am

1n(t)P
m
n (cos θ) sin(mφ)}, (B.1)

where N is the expansion order, the Pm
n (cos θ) are the associated Legendre polynomials

with argument cos θ, and the amplitudes Am
in(t) are unknown functions of time. We de-

fine A0
1n(t) as zero. The normalisation condition, equation (5), is satisfied if and only

if A0
00(t) = 1. Since the particle is symmetric, we require ψ(θ, φ, t) = ψ(θ, φ + π, t) =

ψ(θ + π, φ, t). If m is odd, then cos(mπ) = −1 6= cos(m · 0), which violates the first
condition unless Am

0n = Am
1n = 0. If n is odd, then by the above we need only consider the

case when m is even. The associated Legendre polynomial Pm
n is an odd function under

these circumstances, so Pm
n (cosπ) = Pm

n (−1) = −Pm
n (1) = −Pm

n (cos 0), which violates the
second condition unless Am

0n = Am
1n = 0 again.

Following the procedure of Strand et al. [1], we find that solving equation (7) reduces
to solving the following linear system of ((N/2 + 1)2 − 1) ordinary differential equations:

dAp
0q

dτ
= −

q(q + 1)

6
Ap

0q − Pλ

N
∑

n=0

n
∑

m=0

Am
1na

mp
nq , (B.2a)

dAp
1q

dτ
= −

q(q + 1)

6
Ap

1q + Pλ

N
∑

n=0

n
∑

m=0

Am
0na

mp
nq , (B.2b)

for q = 0, 2, ..., N and p = 0, 2, ..., q. The dimensionless time τ = t/λ, where λ is the
material time constant, and the dimensionless quantity Pλ is the Péclet number. The
coefficients amp

nq are given in Table B.1. For a given Péclet number and expansion order,
the orientation distribution function (equation (B.1)) can be obtained from the solution to
equations (B.2).

We numerically solved equations (B.2) for τ ∈ [0, 10] (i.e., t ∈ [0, 10λ]) using the
“ode45” function in MATLAB (The MathWorks, Inc.) with N = 12 and initial conditions
corresponding to an isotropic orientation distribution: A0

00(0) = 1, Ap
iq(0) = 0 otherwise.
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Table B.1 The amp
nq in equations (B.2).

am,m−2

n,n−2 =
(n− 2)(n +m)!(1− δm0)

4(2n+ 1)(2n− 1)(n+m− 4)!

am,m−2
n,n =

3(n−m+ 2)!(n+m)!(1 − δm0)

4(2n− 1)(2n+ 3)(n+m− 2)!(n−m)!

am,m−2

n,n+2 = −
(n + 3)(n−m+ 4)!(1− δm0)

4(2n+ 1)(2n+ 3)(n−m)!

am,m
n,n = −m/2

am,m+2

n,n−2 = −
(n− 2)(1 + δm0)

4(2n + 1)(2n− 1)

am,m+2
n,n = −

3(1 + δm0)

4(2n− 1)(2n+ 3)

am,m+2

n,n+2 =
(n+ 3)(1 + δm0)

4(2n+ 1)(2n+ 3)

All other amp
nq are zero
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C Calculation of mean shear rate for a rectangular

flow channel

As given by Pozrikidis [4], unidirectional flow in the x-direction through a rectangular
microchannel with cross section −a < y < a and −b < z < b is described by the velocity
profile

u(y, z) =
Gb2

2η

[

1−
(z

b

)2

+ 4
∞
∑

n=1

(−1)n

α3
n

cosh(αny/b)

cosh(αna/b)
cos
(

αn
z

b

)

]

, (C.1)

with η the dynamic viscosity of the fluid, G the pressure gradient driving the flow, and the
constants αn being defined by αn = (2n− 1)π/2. Without loss of generality we shall take
a 6 b.

Equation (C.1) can be rewritten as u(y, z) = (Gb2/η)û(ŷ, ẑ), where hatted variables
are dimensionless, ŷ = y/a, and ẑ = z/b. Integrating equation (C.1) over the square
cross-section and noting that sin(αn) = (−1)n+1, we have that the volume flow rate is,

Q = 4ab

(

Gb2

η

)

q̂(a/b). (C.2)

The dimensionless factor q̂, which depends on a and b only through their ratio, is given by

q̂ =
1

3
− 2

b

a

∞
∑

n=1

tanh(αna/b)

α5
n

. (C.3)

For unidirectional flow, the magnitude of shear rate γ̇ = (tr{γ̇jiγ̇ij}/2)
1/2 is given by

the quantity ((∂u/∂y)2 + (∂u/∂z)2)1/2. Combining equations (C.1) and (C.2), we deduce
the following expression for γ̇ in terms of volume flow rate:

γ̇(y, z) =
ê(ŷ, ẑ)

q̂

(

Q

4ab2

)

, (C.4)

where dimensionless ê(ŷ, ẑ) is given by

ê(ŷ, ẑ) =





(

2

∞
∑

n=1

(−1)n

α2
n

sinh(αnŷ)

cosh(αna/b)
cos (αnẑ)

)2

+

(

ẑ + 2

∞
∑

n=1

(−1)n

α2
n

cosh(αnŷ)

cosh(αna/b)
sin (αnẑ)

)2




1/2

. (C.5)

We define 〈ê〉 as the mean value of ê over the scaled cross-section −1 < ŷ < 1,
−1 < ẑ < 1, noting that this depends on a and b only through their ratio. We also de-
fine 〈γ̇〉 as the mean value of the shear rate γ̇ over the cross-section in physical variables
−a < y < a, −b < z < b, which leads to

〈γ̇〉 =
Q

4(ab)3/2

(a

b

)1/2 〈ê〉

q̂
. (C.6)

4

Electronic Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2013



This equation can be written in a more user-friendly form:

(mean shear rate) =
(volume flow rate)

(cross-sectional area)3/2
E(aspect ratio), (C.7)

where E(a/b) is defined as 2(a/b)1/2 〈ê〉 /q̂. The designation of a and b in the problem is
arbitrary, with E(a/b) = E(b/a). We plot E for aspect ratios varying from 0.2 to 5 in
Fig. C.1.

For the present problem, Q = 1.5 mL min−1 = 2.5 × 10−8 m3 s−1 and the channel
cross-section has area 10−6 m2; we also have E(1) = 4.97 for a square channel. Hence the
mean shear rate 〈γ̇〉 ≈ 124 s−1.
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Fig. C.1 Mean shear coefficient, E , versus aspect ratio, a/b, plotted (a) for values a < b and (b) for
values a > b. Note that E(a/b) = E(b/a).
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D Determining the orientation of α-helices in FtsZ

and M13 bacteriophage

For simplicity, we wanted an angle that represented the average direction of the transitions
occurring at 210 nm with respect to the fibre axis. (For LD calculations, the average must
be of cos2 α, not α.) The 210-nm region of the spectrum is dominated by the low-energy
component of the first α-helix π–π∗ transition, which is polarised along the long axis of the
helix. Following the procedure of Löwe and Amos [5], we reconstructed a model structure
of the FtsZ protofilament from the FtsZ crystal structure (PDB accession code 1FSZ [6]).
We established the angles between the main axis of the protofilament and the transition
vectors of each of the α-helices in FtsZ by drawing least-squares lines through the backbone
nitrogen atoms of each of the α-helices and determining the angle each line made with the
main axis of the FtsZ protofilament. The cos2 α for each helix was then evaluated and
weighted by the helix length (Table D.1) to determine an average cos2 α (0.442). This
average yielded an effective angle, αeff (cf. equation (1)), of 48.3°.

The angles between the long axis of the bacteriophage filament and the transition po-
larisation vectors of the 210-nm π–π∗ peptide sheath were established from the structure of
the phage (PDB accession code 2HI5 [7]). The reconstructed cryo-EM structure introduces
three additional bends into the α-helices, effectively splitting them into four α-helical units
with different angles with respect to the phage main axis. The angles (Table D.2) were
established by drawing least-squares lines through the backbone nitrogen atoms of each
of the α-helices and the average (determined as for FtsZ) was found to be 30.8°. This
contrasts with the value of 21° stated in reference [7] (our averaging of cos2 α is not suffi-
cient to account for the difference) but accords well with the values of 29° or 35°±10° from
reference [8].
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Table D.1 Angles α-helices in FtsZ make with the protofilament axis. Here, L is the helix length in amino
acids and α the angle in degrees between the helix long axis and the main axis of the protofilament.

α-helix L α cosα cos2 α L cos2 α
H0 11 82.0 0.14 0.019 0.21
H1 14 54.0 0.59 0.345 4.83
H2 5 46.4 0.69 0.476 2.38
H3 10 61.3 0.48 0.230 2.30
H4 8 44.6 0.71 0.508 4.06
H5 15 28.8 0.88 0.767 11.51
H6 3 28.6 0.88 0.771 2.31
H7 15 33.0 0.84 0.704 10.56
H8 6 86.5 0.06 0.004 0.02
H9 24 27.3 0.89 0.790 18.96
H10 10 57.0 0.54 0.296 2.96
H11 11 55.1 0.57 0.327 3.60
H12 14 75.5 0.25 0.062 0.87

Table D.2 Angles α-helical units in M13 bacteriophage make with the main axis. Here, L is the helix
length in amino acids and α the angle in degrees between the helix long axis and the phage main axis.

α-helix L α cosα cos2 α L cos2 α
H0 12 5.3 1.00 0.992 11.90
H1 10 28.6 0.88 0.771 7.71
H2 10 39.2 0.78 0.601 6.01
H3 10 42.8 0.73 0.539 5.39
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E Distribution of orientation angles of particles

Calculating the proportion p of M13 bacteriophage filaments that align with θS < ϑ for
ϑ = {10◦, 20◦, 30◦} ≡ {π/18, π/9, π/6} requires the evaluation of

p(θS < ϑ; t) =

∫ π

2
+ϑ

π

2
−ϑ

(
∫ ϕ

0

ψ(θ, φ, t)dφ+

∫ π+ϕ

π−ϕ

ψ(θ, φ, t)dφ+

∫

2π

2π−ϕ

ψ(θ, φ, t)dφ

)

sin θdθ,

(E.1)
where ϕ = arccos

(

cosϑ
sin θ

)

. The integrals were evaluated numerically in Mathematica (Wol-
fram Research, Inc.) and the results are shown in Fig. E.1.
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Fig. E.1 Proportion, p(t), of M13 bacteriophage filaments with θS < ϑ for (a) ϑ = 10°, (b) ϑ = 20°,
(c) ϑ = 30°. Shear rate, k, is a parameter. Time 0 corresponds to the onset of shear flow for an isotropic
distribution of filaments.
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