Non-equilibrium Ionic Assemblies of Oppositely Charged Nanoparticles

Supplementary Information

Rui Zhang¹, Prateek K. Jha², and Monica Olvera de la Cruz^{1,2,*}

¹Department of Materials Science & Engineering and ²Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States

*Corresponding author: <u>m-olvera@northwestern.edu</u>

This material contains four kinetic Monte Carlo simulation movies. General system conditions include $\eta=0.004$, $\sigma_{+}=\sigma_{-}=\sigma$, and $Z_{+}=-Z_{-}=Z$ (except for Movie S4). Red and Blue spheres represent positively and negatively charged NPs, respectively. All movies start from a random distribution of particles (t=0) and end at the time t_{end}. Additional details for each movie are described below.

Movie S1.

A typical simulation run for the $\kappa\sigma=1$, $Z^2l_B/\sigma=81$ system (N₊=N₋=500, t_{end}=1100 τ_0). In this case, NPs self-assemble into crystalline NaCl-type clusters.

Movie S2.

A typical simulation run for the $\kappa\sigma=1$, $Z^2l_B/\sigma=300$ system (N₊=N₋=250, t_{end}=200\tau_0). In this case, NPs self-assemble into ionic chains and fibril-like clusters.

Movie S3.

A typical simulation run for the $\kappa\sigma=5$, $Z^2l_B/\sigma=160$ system (N₊=N₋=250, t_{end}=500\tau_0). In this case, NPs self-assemble into disordered compact clusters.

Movie S4.

A typical simulation run for a "charge-asymmetric" system at the Yukawa conditions $Z_{+}=-Z_{-}/2=Z$, $\kappa\sigma=1$, $Z^{2}l_{B}/\sigma=50$ (N₊=N_=250, t_{end}=1000\tau_{0}). In this case, average cluster size attains a steady value ~7.8 around t=700\tau_{0} and some clusters are in stable chain configuration.