Supporting Information

Graphene Surface Induced Specific Self-Assembly of Poly (3hexylthiophene) for Nanohybrid Optoelectronics: From First-principles Calculation to Experimental Characterizations

Do Hwan Kim[†], Hyo Sug Lee[†], Hyeon-Jin Shin[†], Yoon-Su Bae[§], Kang-Hyuck Lee^{\parallel},

Sang-Woo Kim^{$\|$}, Dukhyun Choi^{\$, *}, and Jae-Young Choi^{$\dagger, *$}

*E-mail address: dchoi@khu.ac.kr (D.C.), jaeyoung88.choi@samsung.com (J.-Y.C.)

Fig. S1. Proposed schematic models of P3HT chains on graphene monolayer.

(b)

Fig. S2. (a) Side view of Figure 1b. (b) Model of a trimer with aklyl chain reflecting the real polymer system in which the long-axis of a trimer is further oriented parallel to the graphene substrate.

Fig. S3. Schematic diagram of P3HT crystallography.

Fig. S4. AFM image and surface roughness of an ITO substrate.

Fig. S5. Band Morphological features of a P3HT thin film spin-coated on ITO. a) AFM and b) cross-sectional TEM images.

Fig. S6. 2D GIXD patterns of a P3HT film spin-coated on a ITO substrate. The inset shows GIXD pattern of ITO as a background.

Fig. S7. Schematic illustration of arrangement of P3HT chains on an ITO surface.