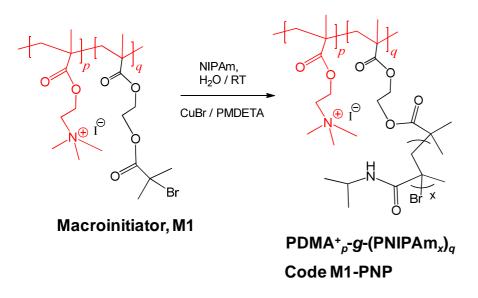
SUPPLEMENTARY INFORMATION

Mixtures of pH-responsive microgels and temperature-responsive

star-like copolymers; from heteroaggregation to gelation

Somjit Tungchaiwattana^{*a*}, Ruixue Liu^{*a,b*}, Silvia Halacheva^{*a*} Nur Nabilah Shahidan^{*a*},

Andrew Kells^c and Brian R. Saunders^{a,*}


^aPolymer Science and Engineering Research Group, School of Materials,

The University of Manchester, Grosvenor Street, Manchester, M13 9PL, U.K.

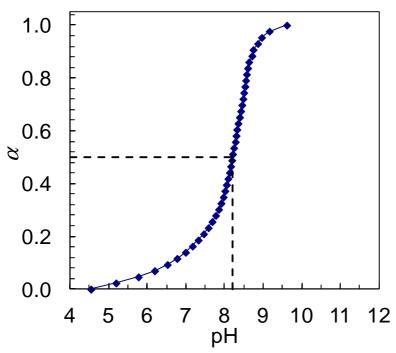
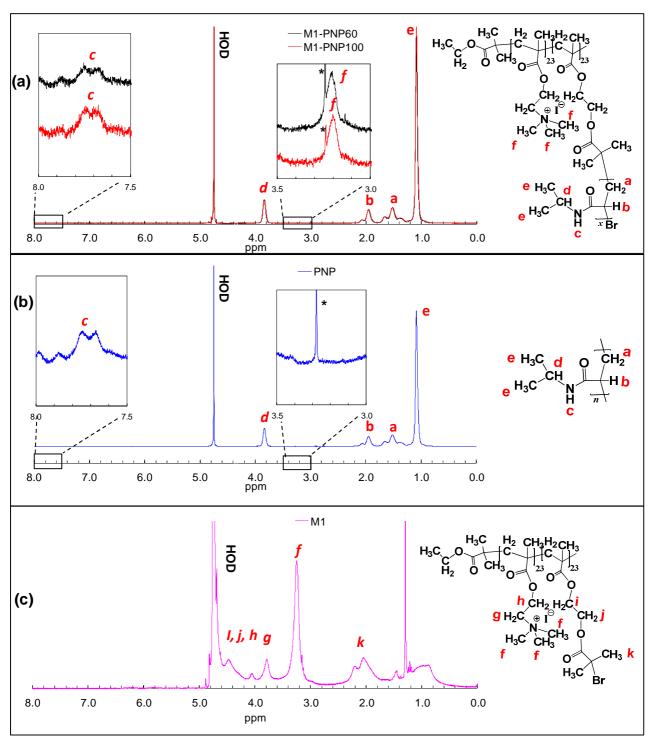
^b School of Material and Chemical Engineering, Zhengzhou University of Light Industry,

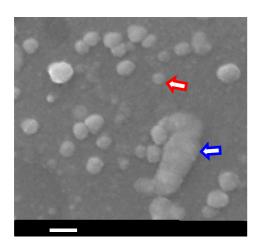
Zhengzhou, 450002, P.R. China

^cSynthomer Ltd, 1¹/₂ miles Jalan Batu Pahat, 86000 Kluang, Johor, Malaysia

Scheme S1. Preparation of temperature-responsive star-like PNP copolymers.

1


Fig. S1. Potentiometric titration data for the MG. α is the degree of neutralisation. The dashed line corresponds to the apparent pK_a .

M1-PNP copolymer compositions from ¹H NMR spectroscopy

The M1-PNP60 and M1-PNP100 copolymers were analysed using ¹H NMR spectroscopy. The spectra for both copolymers were similar and are shown in Fig. S2(a). For comparison, a spectrum of PNP is shown in Fig. S2(b). The ¹H NMR spectrum for the macroinitiator (M1) is shown for comparison in Fig. S2(c). The assignments for the NP protons (Fig. S2(a) and (b)) and the – N(CH₃)₃⁺ protons are from Ray et al. [1] and Liu et al. [2], respectively. The spectra for M1-PNP60 and M1-PNP100 are dominated by PNP as can be seen from comparison to Fig. S2(b). This confirms that the side-chain degrees of polymerisation (*x*) were long compared to the backbone for both M1-PNP60 and M1-PNP100. Fig. S2(a) shows expansions of the –N(CH₃)₃⁺ protons (labelled as *f*). The ratio of carefully integrated areas for these protons (A_f) to those for the –(CH₃)₂CH-protons (labelled as *d*) gave the value for *x*, using $x = 9(A_d/A_f)$. The analysis gave *x* values of 550 and 875 for M1-PNP60 and M1-PNP100, respectively.

Fig. S2 ¹H NMR spectra of (a) M1-PNP60 and M1-PNP100 copolymers, (b) PNP and (c) M1. The spectra were recorded at room temperature in D_2O . The asterisks identify an impurity peak. The spectra in (a) have been offset vertically to make the magnified regions (insets) clearer.

Fig. S3 SEM image for deposited M1-PNP60. The red arrow shows a nanoparticle. The blue arrows identify a large nanoparticle aggregate. The scale bar is 200 nm.

References

[1] B. Ray, Y. Isobe, K. Matsumoto, S. Habaue, Y. Okamoto, M. Kamigaito, M. Sawamoto, *Macromolecules*, 2004, **37**, 1702.

[2] R. Liu, P. De Leonardis, F. Cellesi, N. Tirelli and B. R. Saunders, Langmuir, 2008, 24, 7099.