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Derivation of conductivity of composite media composed of anisotropic elements of 
cylindrical and lamellar morphology 
 
In our derivation we start from the definition of conductivity (σS) of the rectangular slab 
composed of conductive cylindrical or lamellar elements with isotropic conductivity (σC 
and σL, respectively) embedded in a non-conductive matrix (Eqns. 1.1 and 2.1). For 
simplicity, there is only one cylinder and one lamella depicted on the schematics below, 
but in general there can be n elements intersecting the slab. By applying the parallel 
conduction law, the inverse of the overall resistance of the system is the inverse of 
resistance of each element times the number of the elements (Eqns. 1.2 and 2.2). We can 
further substitute the length of the conductive element with the length of the slab 
corrected by a proper function of the tilt angle θ (Eqn. 1.3 and 2.3). For consistency with 
general convention, followed in this manuscript, we have defined θ as an angle between 
the unique vector, or the director, of the anisotropic element and the measurement 
direction (apparent current flow direction). For cylinder the director is parallel to its axis 
while for lamella it coincides with its normal vector. Such convention, in our opinion, is 
more precise and profits in further derivation steps but nevertheless introduces two 
different functional forms in Eqns. 1.3 and 2.3.  Eqns. 1.4 and 2.4 are obtained by 
substitution of the previous results into Eqns. 1.1 and 1.2, respectively. Simplicity of our 
approach consists in the “natural” emergence of the volume fractions of the conductive 
elements (Eqns. 1.5 and 2.5) in the course of the derivation. In particular, it circumvents 
somewhat troublesome constraint on the conservation of the volume fraction of the 
cylinders or the lamellae inside the slab when one tilts them. In the last step we substitute 
expressions from Eqns. 1.6 and 2.6 into Eqns. 1.4 and 2.4, respectively and obtain an 
angular dependence of the conductivity in these systems (Eqns. 1.7 and 2.7).  
Our derivation does not define a lateral extension of the analyzed rectangular slab so we 
implicitly allow it to widen infinitely to accommodate for tilting of the anisotropic 
objects. In the system of finite size one expects a sharp drop of conductivity when the 
objects are tilted beyond an angle providing connectivity between the upper and lower 
electrodes. A model describing such situation for fiber conductivity was given by Weber 
and Kamal long with an excellent review of other models for conductivity of polymer-
conductive fibers composites.1 
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The results obtained in Eqns. 1.7 and 2.7 can be used to calculate ensemble-average 
conductivities of polycrystalline samples composed of isomorphic grains with random 
spatial orientations of conductive domains. One of advantages of defining the tilt angle 
with respect to the unique axes of cylinders and lamellae is the same form of orientation 
probability distribution function for both systems i.e. sin(θ), normalized on [0, π /2] 
azimuthal angle interval (Eqns. 1.8 and 2.8). The azimuthal integrations (Eqns. 1.9 and 
2.9) lead to the same values of conductivities of random polycrystalline cylindrical (Eqn. 
1.10) and lamellar system (Eqn. 2.10), as discussed in the main article. 
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