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I. MODEL AND SIMULATION DETAILS

Polymers are coarse-grained using a chain of soft re-
pulsive blobs. Ideally the size of a single blob should
be much smaller than the colloid diameter so that from
the blob’s point of view the colloid looks almost like a
flat wall. We additionally need to take into account that
the blob model used is valid for densities smaller than
approximately one blob per blob volume [1]

ρblob < 3/(4πr3b ), (1)

with rb the blob radius. In this regime the probability of
3 blobs overlapping is sufficiently small, we neglect many
body effects and interactions between blobs are pairwise
additive. By making blobs smaller we need more of them
to describe a single polymer and consequently computa-
tional cost increases. Blob size was chosen as rb = σ/6
with σ the colloid diameter, which was proven to be a
good tradeoff between accuracy and efficiency. With this
chosen blob size the effective 3D blob density in our simu-
lations always stays within limitations of the model (Eq.
1), i.e. the effective blob density on snapshots shown in
Figure 6 of the main text is about ρblob ≈ 1/8r3b . In order
to additionally verify that the blob picture is appropri-
ate, we performed insertion free energy calculations for
two different blob sizes rb = σ/6 and r′b = σ/12, the re-
sults were essentially the same. We also performed many
colloid simulations for ρ = 3, g′ = 6, with different ra-
tios of blob sizes to colloid diameter of (2, 3, 4), again,
the resulting morphologies and their typical width were
essentially the same.

With this model we performed canonical and grand
canonical Monte Carlo simulations. Surface area, num-
ber of chains and number of blobs in a chain remained
constant throughout a single run. Brush conformation is
changed via a single blob translational moves. Colloids
are also moved around with single translational moves
or (in a Grand-canonical simulation) randomly inserted
or deleted. Simulation box size was always 20 times 20
colloid diameters in x and y with periodic boundary con-
ditions. Box size in z direction was much grater than the
brush thickness so that none of the particles ever inter-
acted with the top surface of the box.

Single colloid insertion free energy Fp(z) was calcu-
lated using Wang-Landau technique [2, 3] biasing in the
z coordinate of the colloid with the biasing function ψ(z).
The bin size was chosen to be σ/12. Initial value of the
modification factor was f = 1, when the ratio between
the maximum and minimum value of the histogram of

all visited states became maxH(z)
minH(z) < 1.5 the new value

for the modification factor was assigned fn = fo/4. This
scheme was continued until the modification factor be-
came sufficiently small f < 10−5, after which the Wang-
Landau algorithm was terminated (setting f = 0) and
a long simulation using the obtained biasing function
was performed. The final free energy was calculated as
βFp(z) = ψ(z)− ln (H(z)) + C, with H(z) the final his-
togram of visited states, β = 1/kBT and C a constant.
C was determined such that the free energy is zero when
the colloid is far above the brush and not interacting with
it Fp(z0) ≡ 0, with z0 � hb, hb being the brush height.

For a given brush, with certain ρ and lp, the free en-
ergy calculations were done and averaged over N = 50
parallel systems, each system having a different random
realisation of the chain anchoring points

〈Fp(z)〉 = −kBT ln

(
1

N

N∑
i

exp (−βF ip(z))

)
. (2)

Total insertion free energy of a single colloid in an ex-
ternal field is obtained by summing up the contributions
from polymer repulsion and external field, since polymer
chains are not affected by external field and the two terms
are decoupled

F (z, g′) = 〈Fp(z)〉+ g′z/(βσ). (3)

II. 2D HOLE-SIZE DISTRIBUTION

Here we derive the analytical expressions for the
distribution of the two–dimensional circular voids on
surfaces characterized by quenched disordered (random
Poissonian) or ordered (square crystal) distribution of
the anchoring points.

Random anchoring points. Fixing the frame of
reference to an arbitrary anchoring point, we want to
evaluate the probability p+(r) to find another point at
a distance between r and r + dr from it (with no points
between 0 and r). On a randomly grafted surface there
are no correlations and we have

p+(r) = 2πrρdr, (4)

where ρ is the mean grafting density. ’+’ designates prob-
ability ’to find’ and ’−’ probability ’not to find’. The
probability not to find an anchoring point in a circle with
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radius r

P−(0, r) =

r∏
r′=0

1− p+(r′) ≈

≈
r∏

r′=0

e−p
+(r′) = e−

∫
2πr′ρdr′ = e−πr

2ρ. (5)

So, in total, the probability to find a first anchoring point
a distance r from a randomly chosen point is

p+1(r) = P−(0, r)p+(r) = 2πrρe−πr
2ρdr. (6)

We would get the same result by differentiating
p+1(r) = −∂(P−(0, r))/∂r.

Square anchoring. The spacing a between the
points on a square lattice is constant, given by the mean
density, ρ = 1/a2. The probability to find an anchor-
ing point a distance r from a randomly chosen point is
2πrdr for r ≤ a/2. Then p+1(r) = A 2πrdr, where A

is a normalization factor. When a/2 < r ≤ a
√

2/2, we
have to work out the arc length l of a circle with radius
r that falls inside a square with the side a. A straight-
forward derivation gives l = 2r(π − 4 arccos a

2r ) and so

p+1(r) = A 2r
(
π − 4 arccos a

2r

)
dr. Using ρ = 1/a2 and

normalizing we get A = ρ, therefore in total

p+1(r)=

2rρ
(
π − 4 arccos 1

2r
√
ρ

)
dr 1

2
√
ρ < r ≤ 1√

2ρ
,

2πrρdr r ≤ 1
2
√
ρ .

(7)
These analytically derived expressions are displayed in
the Figure 1b) in the main text of the manuscript to-
gether with the numerically obtained results.

III. INSERTION FREE ENERGY SCALING

Insertion free energies for disordered grafting at various
chain lengths and grafting densities are shown on Figure
1 . We immediately notice two general scaling relations.
The brush height hb scales approximately linearly with
chain length lp and the insertion free energy increases
approximately linearly with the grafting density (also see
Figure 2 in the main text). We also observe that the
brush height increases slightly with increasing ρ.

In the “mushroom” regime the height of the polymer
layer depends on Rg of individual chains which, for self-
avoiding walk polymers, scales as Rg ∝ l0.58p , it does
not depend on ρ. On the other hand in the “brush”
regime monomer crowding stretches the polymers and
brush height also depends on ρ. For self-avoiding chains

hb ∝ lpρν , (8)

with the exponent ν = 0.35 [4]. Since we observe a depen-
dence of the brush height on ρ we are not in the “mush-
room” regime. Therefore we can assume that we are in
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FIG. 1. Insertion free energy Fbrush(z, ρ, lp): Figures cor-
respond to grafting densities ρ = 0.5, 1, 2, 3, 4. Different
curves present different chain lengths lp: 5 (black), 10 (red),
20 (green), 40 (blue), 60 (orange), 80 (dark green). Colloid
diameter σ is kept constant. The lower right corner shows
scaling performance (Eq. 12) for ρ = 1 - 4 and lp = 40, 60, 80.

the “brush” regime and approximately write that chang-
ing the grafting density from ρ to ρ∗, while keeping the
chain length lp and colloid diameter σ constant, changes
the insertion free energy

F (σ, ρ∗, lp, z) =
ρ∗

ρ
F
(
σ, ρ, lp, z (ρ∗/ρ)

0.35
)
, (9)

where we have to rescale the height of the free energy bar-
rier and also include the brush height dependance on ρ.
We use a general notation that the insertion free energy
depends on the colloid diameter, grafting density, chain
length and vertical position F = F (σ, ρ, lp, z). Using a
different sized colloid σ∗ effectively means we change our
unit of length

F (σ∗, ρ, lp, z) = F

(
σ, ρ

(
σ∗

σ

)2

, lp
σ

σ∗
, z

σ

σ∗

)
, (10)

For long chains, where brush height is larger then about
4 colloid diameters, we also observe (on Figure 1) that
increasing the chain length does not change the barrier
height, it merely stretches the free energy profile, so we
can approximate that

F
(
σ, ρ, l∗p, z

)
≈ F

(
σ, ρ, lp, z

l∗p
lp

)
. (11)

Collecting all scaling relations together (Eq. 9, 10, 11)
we get a master scaling equation

F (σ∗, ρ∗, l∗p, z) ≈
ρ∗

ρ

(
σ∗

σ

)2

F

(
σ, ρ, lp, z

l∗p
lp

(
ρ∗

ρ

)0.35
)
,

(12)
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which should work for high enough grafting densities and
chain lengths.

Lower right corner of Figure 1 shows the scaling per-
formance. Ideally all curves should fall on a single master
curve, we see that the scaling works rather well when the
grafting density and chain length are large enough. The
blue curve that slightly sticks out is the one at ρ = 1 and
lp = 40 (corresponding to ρ̃ ≈ 2), where we are no longer
in the “brush” regime, but somewhere between “brush”
and “mushroom”.

The barrier height scales linearly with the grafting den-
sity (see Fig. 2e) of the main text) - the ideal gas like
behavior - here we attempt to provide a hand waiving
explanation for that behavior. For the range of grafting
densities studied we are above the ”mushroom” regime
and there is appreciable contribution to the pressure (and
insertion free energy) from the second virial coefficient
(due to chain - chain repulsion), so pressure does not
scale linearly with 3D blob density but with an exponent
larger than 1. On the other hand at higher grafting den-
sities (brush regime) the polymer layer height increases
with the grafting density, therefore ρ3Db does not scale
linearly with the grafting density but with an exponent
lower than 1. The two effects approximately cancel out
and we find that the insertion free energy scales approx-
imately linearly with the grafting density.

IV. DETERMINING κ FROM SIMULATIONS

As explained in the main text the balance of hydro-
static and polymer pressure gives

ρ0 = κhbg
′, (13)

with κ a constant. The value of the critical density
should therefore linearly depend on the brush height and
strength of external force field, conversely it should not
depend on the grafting density.

Parameter κ is determined from the plot of ρ0 as a
function of g′h on Figure 2. For a given lp and g′ a
set of systems at various ρ was considered, then ρ0 was
determined from fitting a linear function to plots of η vs.
ρ (like the one shown in the inset of Figure 2). For each
system, η was determined from a 2D blob density plot
(with mesh size am = σ/3) by determining the fraction
of low density area with ρm < ρcutm , ρm being the local
density in a particular mesh point. The cutoff density
was chosen as ρcutm = 〈ρhighm 〉/5, 〈ρhighm 〉 being the average
blob density in the ’high’ density area. That was found
to give a good distinction between low and high density
areas, but the results are not sensitive to a particular
choice ρcutm as long as it is reasonable. We then also have
a relationship ρ0 ' 〈ρhighm 〉/lp.

Brush monomer density is a decaying function of z
(see Figure 2 of the main text) so there are many ways in
which to determine the brush height. Our choice was to
determine hb by considering the blob height distribution
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FIG. 2. Determining κ from simulation snapshots. For each
set of systems at given lp and g′ and various ρ we determine
hb with Eq. 14 and ρ0 with Eq. 13. Horizontal lines depict
standard errors. A Linear function is fitted to the data and its
slope corresponds to κ = 0.11. Our theory says that the brush
height should be independent of ρ because colloids always
compress the brush until the effective brush density reaches
ρ0. We see this assumption is quite accurate, it only deviates
for η very close to 1 (data marked with green circles), where
there is considerable amount of polymer mass being squashed
beneath the colloids. Inset: Dependence of η on ρ for random
(red circles) and square (black squares) anchoring with lp =
40 and g′ = 6, this data corresponds to snapshots on Fig. 6
of the main text.

pb(z), we define hb by an integral∫ hb

0

pb(z)dz ≡ 0.95, (14)

meaning that polymer layer height is defined where there
is 95% of polymer mass under that height. This definition
gives us a layer height that is roughly equal to the average
height of a single colloid sitting on the top of the layer
(e.g. see ρ = 4 curve on Figure 3 of the main text).

V. DETERMINING Cex AND Csq

Here we attempt to determine the value of the constant
Cex which specifies the average free energy penalty per
unit volume per grafting density for inserting an object
into a polymer layer Cex = Fex/((V + Vγ)ρ), where V is
volume of the object and Vγ is volume of the depletion
layer. We can approximately determine Cex by using the
single colloid insertion free energy data (Figure 1). We
can compute the average insertion free energy over the
polymer layer by integrating

〈F (ρ)〉 =
1

hb

∫
F (z, ρ)dz, (15)
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FIG. 3. Average insertion free energies for disordered grafting.
A linear function is fitted to the data at lp = 40 and its slope
corresponds to C∗ex = 6kBTσ

2.

where hb is the brush height determined by Eq. 14. We
plot 〈F (ρ)〉 for different chain lengths on Figure 3. Fit-
ting a linear function to the data we find that the aver-
age insertion free energy (per colloid) per grafting density
C∗ex ≈ 6kBTσ

2. Then we can compute

Cex = C∗ex/(Vcol + V γ) ≈ 4kBT/σ, (16)

Using γ ≈ 0.2 and (Vcol + V γ) = 4π(r + γ)3/3 = 1.43 .

The constant Csq specifies the Free Energy penalty for
squashing a unit length of a chain. We assign a 1kBT
penalty for every deGennes blob (with diameter ξ) being
squashed, so Csq = kBT/ξ. Using ξ = 1/

√
ρ0 we get

Csq = kBT
√
ρ0. For data and snapshots presented on

Figure 6 of the main text ρ0 = 6 and Csq ≈ 2.4kBT
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