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A. Total free energy

For a single surface of revolution terminated by two
space curves, in terms of the angles «, 5;, and ¢;, and
the differential geometric quantities defined in the main
text, the total free energy is given by
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The index of the edges is ¢ = {1, 2}, € is the cut-off length,
which is given by € = —Rsina(R) for the catenoid.

B. Euler-Lagrange equations

The variations (‘%, where g; = {«, 81, B2, 1, P2}, are
equivalent to the Euler-Lagrange (EL) equations. For
one independent and several dependent variables, the EL

equations are given by [1]
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where f = f(r,g;,9;) is the free energy density given
by F = [drf(r,gj,9}). Primes denote derivatives %.
The set of EL Equations in Eq. (5) contains ten coupled
nonlinear first-order differential equations. Evaluating

Eq. (5), these equations are calculated as

d
up = =7mkr cos ad—a + 2kpkn,1 cos B + 2kpkp,2 cOs o
r

o’
+ hysin B1 + hg sin By,
(6)
of of
Uz = (9—ﬁ1 =2kpkg1, u3z = a—ﬁé = 2kprg2, (7)
of of
U4Ea¢/l :AlTCOSOé, U5E@:A2TCOSO‘7 (8)

. . 2
, 9 . krsina |2 sin?a 9 do
ujcos“a=onrsinag + ——— |- — —— —rcos‘a | —
2 T T dr

+ sinasec B1 (1 + kbl‘ii,l - kbﬁgyl)

+ sinasec Ba(y2 + kb“i,z — ka;Q)

2 .2 .
2ad
Dy 1 sec By cosasin” i sin2ada cos? By
’ r 2 dr
2 ) i2 :
2ad
ki 2 50 B (cos asin” By sin2a do cos? 52>
r 2 dr

1
— ; (hl sin ﬂl + hQ sin ﬂg)

sin 2«
2

()\1 tan ﬂl —+ AQ tan /82) s
(9)

cos avcos? Bruly = (k + k) cosa

+ y18in B — A1 cos

2k
. 2 2 b
+ kpsin B (k;, 1 — Ky 1) + — figacosa

+ (4kptin,1 cos 1 — hy cos B cot B1) g1,
(10)



Electronic Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2013

cos acos? Bouly = (k4 k) s

+ 9 sin B2 — Ag cos &
. 2k
+ kp sin Bz(liig — ﬁ§)2) + Tbmgg cos o

+ (4kphin 2 cos fa — ha cos Bz cot B2) T4 2,
(11)

or k. k (da > 2
+ —sinatana 4+ —rcosa | — .
cosa  2r 2 dr
(12)
In Eq. (9), the two constraints r cos a% = tan f3; are
used. Based on Egs. (8) and (12), we conclude that A =
A1 = Ao. Then, the nine unknowns to be solved are
avalvﬂlaﬂivﬂ25ﬂév¢lv¢27)\'
Note that we neglect the contribution of the variations
(?Ti to the surface and edge deformations, as explained

/A
Uy = U5 =

in the main text. Therefore, the structure in our approx-
imation is governed solely by «a, &', 81, 1, 82, 55. In the
case of the minimal surface, since a and o’ are calcu-
lated analytically (see main text), the equations govern-
ing 1, 81 and B2, 85 are decoupled from each other.

C. Boundary conditions

The torque-free boundary conditions are given by
Egs. (6), (7), and (8) being equal to zero [1]. Suffi-

ciently away from the rotation axis of the surface, in 2D
membrane limit, « = 0, &’ = 0, and «” = 0. Then,
kn,i = 0. Plugging in these results to Eq. (9), we find
that sin 8; = A;/r. This rather expected result applies
to a straight line in polar coordinates, where the shortest
distance between the origin and the straight line is A;
(or, the in-plane protrusion amplitude). When h; = 0 as
in the achiral limit, then the same relation still holds, and
this time the torque-free condition 68 O{, = 0 is satisfied.
The geodesic curvature sy ; of a straight line vanishes in

2D, hence gg{ = 0. In the 2D membrane limit A must be

zero. This is best seen when a curve with the free energy
given in Eq. (3) is minimized on a plane. The resulting
EL equations are independent of ¢;, then A = 0. Hence

gT{; = 0, away from the rotation axis of the nonplanar

surface. Plugging in these results into Eqgs. (10) and (11),
we find that k+k = 1 A; = 72 45. For a minimal surface,
k does not contribute to this equation.

At the cusp, ideally, the boundary conditions are o« =
—7/2 and B; = 0 (again, we ignore (‘% dependence of
the structure). In the case of the minimal surface, since
€ ~ 1072R, we take o = 0.95 which nearly corresponds
to a 70° slope. This slope is steep enough as evidenced

in Fig. 3(a) in the main text.
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