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A. Total free energy

For a single surface of revolution terminated by two
space curves, in terms of the angles α, βi, and φi, and
the differential geometric quantities defined in the main
text, the total free energy is given by

F = FH + Fedge1 + Fedge2 + Fλ1
+ Fλ2

, (1)

where

FH =

∫ R

ǫ

dr(π + φ1 + φ2)

[

σr

cosα
+

k

2r
sinα tanα

+
k

2
r cosα

(

dα

dr

)2
]

+ (k + k̄)

∫ R

ǫ

dr

r
(tanβ1 + tanβ2)

− (k + k̄) cosα(R)(π + φ1(R) + φ2(R))

+ (k + k̄) cosα(ǫ)(π + φ1(ǫ) + φ2(ǫ))

(2)

Fedgei =
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+ kb
κ2

g,i + κ2

n,i

cosα cosβi

−hi

sinβi

cosα
(κ2 − κ1)

]

,

(3)

Fλi
=

∫ R

ǫ

drλi

(

r cosα
dφi

dr
− tanβi

)

. (4)

The index of the edges is i = {1, 2}, ǫ is the cut-off length,
which is given by ǫ ≡ −R sinα(R) for the catenoid.

B. Euler-Lagrange equations

The variations δF
δgj

, where gj = {α, β1, β2, φ1, φ2}, are

equivalent to the Euler-Lagrange (EL) equations. For
one independent and several dependent variables, the EL
equations are given by [1]

∂f

∂gj
=

d

dx

∂f

∂g′j
(5)

where f = f(r, gj , g
′

j) is the free energy density given

by F =
∫

drf(r, gj , g
′

j). Primes denote derivatives
dgj
dr

.
The set of EL Equations in Eq. (5) contains ten coupled
nonlinear first-order differential equations. Evaluating
Eq. (5), these equations are calculated as

u1 ≡
∂f

∂α′
=πkr cosα

dα

dr
+ 2kbκn,1 cosβ1 + 2kbκn,2 cosβ2

+ h1 sinβ1 + h2 sinβ2 ,

(6)

u2 ≡
∂f

∂β′

1

= 2kbκg,1 , u3 ≡
∂f

∂β′

2

= 2kbκg,2 , (7)

u4 ≡
∂f

∂φ′

1

= λ1r cosα , u5 ≡
∂f

∂φ′

2

= λ2r cosα , (8)
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2
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−
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(9)

cosα cos2 β1u
′

2
= (k + k̄)

cosα

r
+ γ1 sinβ1 − λ1 cosα

+ kb sinβ1(κ
2

n,1 − κ2

g,1) +
2kb
r

κg,1 cosα

+ (4kbκn,1 cosβ1 − h1 cosβi cotβ1) τg,1 ,

(10)
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cosα cos2 β2u
′

3 = (k + k̄)
cosα

r
+ γ2 sinβ2 − λ2 cosα

+ kb sinβ2(κ
2

n,2 − κ2

g,2) +
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(11)

u′

4
= u′

5
=
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cosα
+

k

2r
sinα tanα+

k

2
r cosα

(

dα
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)2

.

(12)

In Eq. (9), the two constraints r cosαdφ1

dr
= tanβi are

used. Based on Eqs. (8) and (12), we conclude that λ ≡
λ1 = λ2. Then, the nine unknowns to be solved are
α, α′, β1, β

′

1
, β2, β

′

2
, φ1, φ2, λ.

Note that we neglect the contribution of the variations
δF
δφi

to the surface and edge deformations, as explained

in the main text. Therefore, the structure in our approx-
imation is governed solely by α, α′, β1, β

′

1, β2, β
′

2. In the
case of the minimal surface, since α and α′ are calcu-
lated analytically (see main text), the equations govern-
ing β1, β

′

1
and β2, β

′

2
are decoupled from each other.

C. Boundary conditions

The torque-free boundary conditions are given by
Eqs. (6), (7), and (8) being equal to zero [1]. Suffi-

ciently away from the rotation axis of the surface, in 2D
membrane limit, α = 0, α′ = 0, and α′′ = 0. Then,
κn,i = 0. Plugging in these results to Eq. (9), we find
that sinβi = Ai/r. This rather expected result applies
to a straight line in polar coordinates, where the shortest
distance between the origin and the straight line is Ai

(or, the in-plane protrusion amplitude). When hi = 0 as
in the achiral limit, then the same relation still holds, and
this time the torque-free condition ∂f

∂α′
= 0 is satisfied.

The geodesic curvature κg,i of a straight line vanishes in

2D, hence ∂f
∂β′

i

= 0. In the 2D membrane limit λ must be

zero. This is best seen when a curve with the free energy
given in Eq. (3) is minimized on a plane. The resulting
EL equations are independent of φi, then λ = 0. Hence
∂f
∂φ′

i

= 0, away from the rotation axis of the nonplanar

surface. Plugging in these results into Eqs. (10) and (11),
we find that k+k̄ = γ1A1 = γ2A2. For a minimal surface,
k does not contribute to this equation.
At the cusp, ideally, the boundary conditions are α =

−π/2 and βi = 0 (again, we ignore δF
δφi

dependence of

the structure). In the case of the minimal surface, since
ǫ ≈ 10−2R, we take α = 0.95 which nearly corresponds
to a 70o slope. This slope is steep enough as evidenced
in Fig. 3(a) in the main text.
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