Supplementary Information for

Effect of miscibility on spherulitic growth rate for double-layer polymer films†

Yaqiong Zhang, Zhongkai Wang, Feng Jiang, Jing Bai and Zhigang Wang*

Fig. S1 DSC thermograms (heat capacity C_p curves) for PCL/PLA blends with PCL compositions of (a) 0 wt%, (b) 5 wt%, (c) 10 wt%, and (d) 20 wt%. Vertical shifts of the C_p curves have been applied for clarity.

Fig. S2 DSC thermograms for PEO/PLA blends with PEO compositions of (a) 0 wt%,
(b) 5 wt%, (c) 10 wt%, and (d) 20 wt%. (A) C_p curves. (B) Temperature derivative of C_p curves. Vertical shifts of the curves have been applied for clarity.

Fig. S3 DSC thermograms of PEG/PLA blends with PEG compositions of (a) 0 wt%,
(b) 5 wt%, (c) 10 wt%, and (d) 20 wt%. (A) C_p curves. (B) Temperature derivative of C_p curves. Vertical shifts of the curves have been applied for clarity.

Fig. S4 DSC thermograms of PEO. From top to bottom, the heat capacity C_p curve and the temperature derivative of C_p curve smoothed over 30 °C. These two methods of T_g determination are in a good agreement.

Fig. S5 DSC thermograms of PEG. From top to bottom, the heat capacity C_p curve and the temperature derivative of C_p curve smoothed over 30 °C. T_g can be well determined from the temperature derivative of C_p curve.