
SUPPLEMENTARY INFORMATION

A. Supporting Online Movie

00:00:00 → 00:00:46 .-Pushing Spiral : A 50 µm film (bi-oriented polypropylene) is

fixed to a rigid frame of size 0.8 m × 1.2 m, and an incision 7 mm in length is made that

defines two cracks at points A and B (shown in the movie). With the help of a small cylinder

of diameter 2 mm, we start pushing over one lip in the region closest to point B. After the

lip has rotated 3π/2 radians the propagation of the spiral is fairly insensitive to the position

of the tool.

00:00:46 → 00:01:31.- Pulling Spiral : A 50 µm film (bi-oriented polypropylene) is

attached, at its edges, to a flat surface. At the center of it a circular hole is made and,

tangentially to this hole, a notch is cut defining one crack point, B (shown in the movie).

The end of the notch makes a convex hull with an exterior angle χ(≤ β). By pulling the

resulting tear upwards, we form a fold which releases elastic energy by propagating a crack.

The final crack path grows following a smooth logarithmic spiral shape.

B. Classic Fracture Mechanics: Determination of angles α and β.

A similar analysis to the one used by Hamm et al. [S1] and Audoly et al. [S2] is suitable

to describe the fracture process leading to a spiral. We understand the process as the

systematic repetition of the storage and release of energy, which can be separated into two

steps:

1. Before rupture: The tool performs work by pushing the edge of the film from point

O to point P . Energy increases because of the stretching produced by the change in

length of the original line AOT (see Fig. S1(a)) into the new line APT .

2. Rupture: Fracture occurs for a fixed position of point P . Thus, at some threshold

value of the energy, it is more effective to release the elastic energy through fracture

than to continue deforming. The release of energy is computed from the variation of

the geometrical configuration when the crack propagates a length δs. Accordingly,

point T is now T ′ and, therefore, the lengths d, L, and L′, and the angles α and α′

change to new values (see Fig. S1).
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Fig. S 1. Variation of the geometry in the system owing to crack propagation. (a) Geometry before

fracture. (b) Geometry after the crack moves a distance δs.

Having neglected bending energy, the total energy of the system is the sum of the surface

energy γts and the elastic energy associated with the deformation of line AOT into line

APT . The stretching of line APT can be described by the distances d, L and L′ defined in

(see Fig. S1(a)). Thus, the total energy in the system is:

U = UE(d, L, L′) + γts (S 1)

For a fixed position of point P , the Griffith criterion applied to the last relation [S3] gives

δU = (∂dUE)L,L′δd+ (∂LUE)d,L′δL+ (∂L′UE)d,LδL
′ + γtδs = 0

Note that the variation in the distance d is explained by the displacement of point O to the

new point O′ in Fig. S1(b). The total force applied is connected with the energy by the

relation ~F = ∂dUE d̂, therefore, the magnitude of the force is given by F = ∂dUE and the

equilibrium equation can be simplified to

δU = Fδd+ ∂LUEδL+ ∂L′UEδL
′ + γtδs = 0 (S 2)

By examining Fig. S1, it is straightforward to connect the variations of δd, δL, and δL′

to the change in fracture length δs. To first order, we obtain

δL′ = δs
L

W
tanα sin β (S 3)

δL = −δs cos β − δs L
W

tanα sin β (S 4)

δd = −δs L
′

W
sin β (S 5)

where W = L+ L′ is the unstretched length of the lip.
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1. First and Second Variations of the Energy

Replacing Eq. (S 3), Eq. (S 4) and Eq. (S 5) into Eq. (S 2) gives for the first variation of

the energy

δU

δs
= −F L

′

W
sin β − ∂LUE

(
cos β +

L

W
tanα sin β

)
+ ∂L′UE

L

W
tanα sin β + γt = 0 (S 6)

The constitutive relation for the force F = F (d, L, L′) allows the elimination of the parameter

d in Eq. (S 6). Thus, an implicit relation for the force F = F (β, L, L′) is obtained. To find

the direction of propagation, we require that the tear follows the direction where a minimal

force is necessary to advance the crack, or equivalently, (∂βF )|L,L′ = 0. An implicit derivative

of Eq. (S 6) gives the condition ∂β(δU/δs) that is usually referred to as the maximum-energy-

release-rate criterion. Therefore, a second condition is obtained as

∂

∂β

δU

δs
= −F L

′

W
cos β − ∂LUE

(
− sin β +

L

W
tanα cos β

)
+ ∂L′UE

L

W
tanα cos β = 0 (S 7)

Solving Eqs. (S 6) and (S 7) for F and ∂LUE, we find the expressions

F =
L

L′
tanα (∂L′UE − ∂LUE) +

W

L′
γt sin β (S 8)

∂LUE = γt cos β (S 9)

2. Energy and Force

The elastic energy can be separated in two parts corresponding to the left and right ridges

relative to the position of the tool. Hence,

UE = Ul + Ur

From dimensional grounds, the stretching energies for the left and right ridges are Ul =

EtL′2u(α′) and Ur = EtL2u (α), respectively. In addition, u(α) ≈ u(d/L) ≈ a(d/L)n+1 for

small angle α or d/L � 1, where a and n are dimensionless unknown positive numbers. It

gives for the elastic energy

UE = Ul + Ur = aEt

[
L′2
(
d

L′

)n+1

+ L2

(
d

L

)n+1
]

(S 10)
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We now can compute the total force. It yields

F = ∂dUE

= a(n+ 1)Et

[
L′
(
d

L′

)n
+ L

(
d

L

)n]
= a(n+ 1)EtL

[
1 +

(
L

L′

)n−1]
αn (S 11)

Similarly, we explicitly compute the other remaining terms in Eqs. (S 8) and (S 9)

∂LUE = ∂LUr

= −a(n− 1)EtL

(
d

L

)n+1

= −a(n− 1)EtLαn+1 (S 12)

∂L′UE = ∂L′Ul

= −a(n− 1)EtL′
(
d

L′

)n+1

= −a(n− 1)EtL′α′n+1 (S 13)

3. Determination of α and β

Equations (S 8) and Eq. (S 9) can be simplified to obtain the values of α and β. Replacing

Eqs. (S 11), (S 12) and (S 13) into Eq. (S 8) gives the relation

a(n+ 1)EtLαn
(
1 + εn−1

)
= γt sin β (1 + ε) + a(n− 1)EtLαnε

(
1− εn+1

)
(S 14)

where ε = L/L′. Since α� 1, the last term in Eq. (S 14) is of higher order in α and can be

neglected. Thus, Eqs. (S 8) and (S 9) are

a(n+ 1)EtLαn
(
1 + εn−1

)
= γt sin β (1 + ε) (S 15)

−a (n− 1)EtLαn+1 = γt cos β (S 16)

We have two equations and two unknowns α and β. Solving for β, we obtain

cot β = − (1 + ε)

(1 + εn−1)

n− 1

n+ 1
α (S 17)

There are an infinite number of solutions for β in the last expression, however, we know

from our experiments that β must be close to π/2. Hence, cot β = tan(π/2− β) ∼ π/2− β.

Consequently, Eq. (S 17) gives

β =
π

2
+

(1 + ε)

(1 + εn−1)

n− 1

n+ 1
α (S 18)
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Using this relation in Eq. (S 15), we find for α

α =

[
`

aL(n+ 1)

1 + ε

1 + εn−1

]1/n
(S 19)

where ` = γ/E. We now review the assumptions made to obtain Eqs. (2). Incidentally,

Eqs. (2) are correct for the special cases ε = 0 and ε = 1, however, we can show that the

region of validity is wider. The main requirement in our calculations is to have small angles

α, α′ � 1 along the fracture process. However, this cannot be true if the tool is too close

to points T or A in Fig. S1. The divergence when the tool approaches point T is explicit

from Eq. (S 19), however, it is a weak divergence due to the low exponent 1/n ≈ 0.4. The

failure of our approach when the tool is close to point A is observed in Eq. (S 14) where a

term of higher order in the angle α was neglected. Comparing this term to the left side of

the same equation, we obtain the condition (n + 1) (1 + εn−1) � (n − 1)α2ε (1− εn+1) for

the validity of this approximation. Our experimental values α ∼ 10o and n ≈ 2.5 show that

this assumption is correct for ε . 4 or L . 0.8W . Thus, the tool cannot be closer than a

distance W/5 to point A. Moving the tool outside this region, we conclude that α and β

change no more than 2 and 0.9 degrees, respectively, due to variations in ε. Therefore, it is

a good approximation to neglect ε in relations (S 18) and (S 19). It yields

β =
π

2
+
n− 1

n+ 1
α (S 20)

α =

[
`

aL(n+ 1)

]1/n
(S 21)

C. Logarithmic Spiral Characterization

The logarithmic spiral has a simple geometrical definition: the vector joining the center

of the spiral to a given point P keeps a constant angle φ < π/2 with the tangent to the

spiral at the point P (see Fig. S2(a)). In polar coordinates the solution that satisfies this

condition is r = r0e
θ cotφ. Interestingly, our experiments suggest an alternative definition

to a logarithmic spiral. The spiral growth of a tear is based on the construction of the

convex hull by using the constant angle β between the tangents to the fracture trajectory at

points Q and P (see Fig. S2(b)). This definition and the standard definition are, of course,

equivalent. To show that, we will prove that there is a relation connecting the angle β with

the spiral angle φ, which is the same for any given position of point P in the spiral.
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Fig. S 2. The logarithmic spiral (a) and the experimental spiral (b).
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Fig. S 3. Geometry in the logarithmic spiral

The proof comes from simple geometry. Points Q and P have the polar coordinates

(r0, θ0) and (r1, θ1), respectively (see Fig. S3). If we set θ = 0 to coincide with the horizontal

axis, line OP has an angle θ1 − 2π with this axis. Geometry in the triangle QOP shows

that the angle ∠QOP = β (see Fig. S3), hence we have the condition θ0 − (θ1 − 2π) = β.

The height h of triangle POQ in Fig. S3 can be written in two equivalent ways as

h = r0 sinφ = r1 sin(π − β − φ)

which gives the relation

r0
r1

=
sin(β + φ)

sinφ
(S 22)
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Since points Q and P belong to the logarithmic spiral, we obtain r0 = eθ0 cotφ and r1 =

eθ1 cotφ. Thus,

r0
r1

= e(θ0−θ1) cotφ = e(β−2π) cotφ (S 23)

Replacing Eq. (S 23) into Eq. (S 22), we finally obtain the transcendental relation connecting

β and φ

sinφ e−(2π−β) cotφ − sin(β + φ) = 0 (S 24)
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