Supporting Information

A Novel One-pot Approach towards Dynamically Cross-linked Hydrogels

Shereen Tan, Anton Blencowe, Katharina Ladewig and Greg G. Qiao*

Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia

Figure S1. (a) ¹H NMR spectrum (d_6 -DMSO, 400 MHz) and (b) MALDI ToF mass spectrum of α, ω -dialkyne PEG_{10K} P1. The mass spectrum was recorded in linear/positive mode using 2-[(2*E*)-3-(4-*tert*-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) as the matrix and sodium trifluroacetate (NaTFA) as the cationisation agent. The numbers on the mass spectrum denote the number of repeat units (n), the peak m/z values and mass difference. The single mass series correlates to the Na⁺ salt.

Figure S2. (a) ¹H NMR (d_6 -DMSO, 400 MHz) spectrum and **(b)** MALDI ToF mass spectrum of **C1.** The mass spectrum was recorded in linear/positive mode using 2,5-dihydroxybenzoic acid (DHB) as the matrix and NaTFA as the cationisation agent. The numbers on the mass spectrum denote the number of repeat units (n), the peak m/z values and mass difference. The major series correlates to the Na⁺ salt.

Scheme S1. Schematic representation of the one-pot approach used for the synthesis of covalent (CV) hydrogel networks.

Figure S3. ¹H NMR (d_6 -DMSO, 400 MHz) spectra of (a) *trans* sodium 4-(phenylazo)benzenoate C2 and (b) the starting material, 4-(phenylazo)benzoic acid.

Figure S4. ¹H NMR (D₂O, 400 MHz) spectra of (a) α -CD/*trans* inclusion complex, (b) *trans* C2 and (c) α -CD.

Figure S5. ¹H NMR NOESY (D₂O, 400 MHz) spectra of (a) *trans* C2/CD inclusion complex.

Hydrogel ^a	Tc ^b (⁰C)	Molar excess of C2	ESR℃	E _v ^d (MPa)	E _e ^e (MPa)
SR-15wt%	20 60	-	32.50 20.84	0.022 0.191	0.010 0.027
SR-21wt%	20 60	-	19.15 17.25	0.081 0.666	0.011 0.041
SR-28wt%	20 60	-	11.61 14.21	0.128 1.292	0.020 0.075
CV-15wt%	20 60	2 5	24.75 18.26	0.023 0.728	0.021 0.032
CV-21wt%	20 60	2 5	19.15 13.35	0.102 1.253	0.035 0.051
CV-28wt%	20 60	2 5	12.27 7.13	0.263 1.612	0.046 0.111

Table S1. Summary of the conditions used to synthesise the SR and CV hydrogels and their physical properties.

^a SR refers to sliding-ring networks, CV refers to covalent networks and wt% refers to the weight percent of reagents used in the total reaction mixture

^b T_c refers to the curing temperature.

^c Equilibrium swelling ratio (ESR) = ((W_s - W_r)/ W_r), where W_s refers to the weights of the swollen hydrogel and W_r refers the weight of the reagents used.

^d Compressive stress required to achieve 0.3 mm/mm deformation on 'as-prepared' hydrogels. Determined using an Instron Microtester 4858.

^e Compressive stress required to achieve 0.5 mm/mm deformation on fully swollen hydrogels at 0.5 mm/mm strain. Determined using an Instron Microtester 4858.

Figure S6. Equilibrium swelling ratio (ESR) of sliding-ring (SR) hydrogels cured at **(a)** 20 °C and **(b)** 60 °C, and covalent (CV) hydrogels cured at **(c)** 20 °C and **(d)** 60 °C. All ESR experiments were conducted in distilled water.

Figure S7. Stress-strain curves of the sliding-ring (SR) and covalent (CV) hydrogels cured at 60 °C at (a) no volume change ('as-prepared') and (b) equilibrium.

Scheme S2. Synthesis of the control, thioglycerol end-functionalised PEG_{1OK} P3, via thiolyne click chemistry.

Figure S8. ¹H NMR (d_6 -DMSO, 400 MHz) spectra of (**a**) the starting material α, ω -dialkyne PEG_{10K} **P1** and (**b**) the control, thioglycerol end-functionalised PEG_{10K} **P3**.

Figure S9. DRI (solid) and UV (dotted) ($\lambda = 344$ nm) chromatograms of the rotaxanes (a) P2-28, (b) P2-21 and (c) P2-15 cured with 28, 21 and 15 wt % of reagents, respectively, (d) the control P3, (e) the starting material P1 and (d) the azido functionalised α -CD C1.

Figure S10. MALDI ToF mass spectrum of **P3.** The mass spectrum was recorded in linear/positive mode using 2,5-dihydroxybenzoic acid (DHB) as the matrix and NaTFA as the cationisation agent. The numbers on the mass spectrum denote the number of repeat units (n), the peak m/z values and mass difference. The major series correlates to the Na⁺ salt.