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1. Asymptotic solutions 
 

The asymptotic approach detailed here is of particular interest when the cantilever is stiff or the 

ramp duration is short. Many useful results may be determined and these are found in this section. 

1.1 Formation of asymptotic limits 

Few analytic solutions of non-linear Volterra equations are known,1 to progress further equation (6) 

in the manuscript is linearised by assuming  )(/ 2/1

1 xhGAk  for all x  in the interval ],0[ t , this is 

exact in the limit as k , i.e. infinite spring stiffness, 
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where )(0 th  is the indentation depth in this limit,  / ,  
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Equation (1.1) is a linear Volterra equation of the second kind and has the following exact solution, 
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To investigate corrections to this linear limit consider )()()( 0 tEthth  , where )(tE  is the 

correction to the infinite spring stiffness solution, combined with equation (4) in the manuscript and 

equation (1.1), defining )/(1 AkG , the following is obtained, 
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this is another non-linear Volterra equation of the second kind and may be linearised by expanding 
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0 th , into equation (6) in the manuscript produces the following linear Volterra equation of the 

second kind,  
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where )(1 tE  is the leading order solution of equation (1.3). The solution to this linear Volterra 

equation of the second kind is, 
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where  /)1(   and 1)(/)( 0 thtE . 

1.2 Infinitely stiff spring limit 

When the cantilever stiffness is infinite, controlling the position of the fixed end is equivalent to 

controlling the position of the spherical indenter, as demonstrated by equation (1.2). When equation 

(1.2) is substituted into equation (2) in the manuscript, this produces a force (0 N) which is in direct 

violation of Lee and Radok2 result for controlling the position of the spherical indenter for a Maxwell 

fluid during the ramp phase. This apparent paradox is resolved by noting that equation (1.5) 

contributes to the force even as k  and substituting this produces the following equation, 
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Furthermore, this solution corresponds to the force provided by Lee and Radok2 when .02 G  The 

hold phase was not considered by Lee and Radok2 for the controlled position case, also equation 

(1.6) includes the corrections to the force due to a large but finite stiffness of the cantilever (i.e. 

1 ), since the derivation differs significantly here from Lee and Radok,2 agreement indicates 

that this model is consistent and has the correct limits as k . 
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1.3 Determination of the viscoelastic parameters in the asymptotic limit 

Although it is possible to determine the three viscoelastic parameters by fitting the force to equation 

(1.6), this is likely to produce significant errors. Instead, the ramp phase from equations (1.2) and 

(1.5) may be considered for short durations; should 1)/()( 2/1

1 AkVG   then 1)(/)( 0 thtE  is 

automatically satisfied. In this case the force is approximated by, 
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Equation (1.7) can be used to determine 
1G . To determine the value of 

2G , consider the hold 

phase. Taking the limit )(limˆ tEE
t 

  , the following result is obtained
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21 GGAkVGGE   . When 12 ~ GG  or 12 GG   this approach will give 

reasonable estimates for 2G . As 2G ,  )/()(ˆ 2/3

1 AkVGE   no further information may 

be obtained from this limit. Alternatively, during the hold phase the following equation is valid,
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with        14/erfi3322 2/32/3     tee , hence   and   can be 

determined; from these the parameters 2G  and   to be determined as follows, )/(1    and 

   /12 GG . 

1.4 References 

 

1 P. Linz, Analytical and numerical methods for Volterra equations, SIAM, 1985, ch. 1, pp 3-4. 

2 E. H. Lee and J. R. M. Radok, Journal of Applied Mechanics, 1968, 27, 438-444. 

2. Numerical solution 
The two numerical solutions discussed in this section can be split simply into, an efficient solver 

using an algorithm developed by NAG and a licence must be acquired for use. However typically a 

simpler algorithm may be invoked but greater computational effort is required, this second 

approach is discussed in detail so that a simple and usable code may be developed without access to 

a numerical algorithm licence.  

2.1: NAG library algorithm D05BA 
The solutions presented in §1 are approximate. To confirm their limits a numerical procedure has 
been developed to solve equation (6) in the manuscript directly, by evaluating the integral using the 
NAG library algorithm D05BA. This algorithm requires the Volterra equation to be written in 
standard form with  
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where )()( 1 tata  [equation (6a) in the manuscript] or )()( 2 tata   [equation (6b) in the manuscript] 
as appropriate and the solution for )(th  requires the solution of the polynomial defining )(t . D05BA 
requires the integrand and the function )(ta  to be provided x  as inputs, and )(t  is returned; an 
example is provided in the NAG library documentation and involves replacing the integrand and the 
function with the equations detailed above to obtain this algorithm. Since the NAG routine requires 
a licence for the NAG library an alternative is provided in the supporting information, however 
greater computational effort is required to obtain satisfactory results. 

2.2: Alternative numerical solver 

The numerical solver discussed in the manuscript requires access to the NAG routines. A simpler 

code will be described here which can be written using most programming languages, however a 

Matlab® code is supplied illustrating its implementation. 

2.3: Trapezoidal rule 

The integration needs to be evaluated and the indentation depth solved. The first step requires a 

numerical scheme to perform the integration; the trapezoidal rule (on a uniform grid) is 

implemented in this case, 
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where the domain of integration is discretised into N  equally spaced grid points, of grid spacing 

  Nabh /
~
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2.4: Implementation 

The full nonlinear Volterra equation may be found in the manuscript in equations (6), (6a) and (6b) 

and are reproduced here, 























 












t
td

t

ehta

t
t

d

t

ehta
th

G

Ak
th

 
0   Phase Hold           : )()(2

Phase Ramp   0  : 
 
0 )()(1)(

2/1

1

)(











   

(2.1)

 

where 1/GAk , 

3/1
3

1

4)(27)(312

3

1

8)(108




























































G

Ak
tt

G

Ak
t

Electronic Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2013



6 
 


t

e
G

Akh
t

e
G

AkV
hVt

GG
Akta




































2

)0(
1

2

))0((

2

1

1

1
)(1     (2.1a) 







t

e
G

Akh
t

e

t

e
G

AkV
hV

GG
Akta








































2

)0(

2

))0((

2

1

1

1
)(2  .   (2.1b) 

 

To solve equation (2.1) the trapezoidal rule is applied at each time step to determine a polynomial 

which enables the indentation depth at the next time step to be determined. 
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collecting all the terms on the left hand side (LHS) depending on  hh
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The solution to the polynomial in equation (2.3) enables the indentation depth to be obtained from, 

   tgth 2 . Equation (2.3) may be generalised for any number of h
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equation, t  

       


























 





















 h
htg

h
Itatg

h

G

Ak
tg

~

exp
~

2

~

2

~
2

1

1

2   (2.4) 

where 


h
dehI

t~- t
0 )(  



, obtained by the trapezoidal rule. Writing the LHS of equation (2.4) as, 

        tgLtgtg
h

G

Ak
tg 













 2

1

2

2

~


     (2.5) 

with 2/
~

/ 1 hGAkL   and the right hand side of equation (RHS) (2.4), 
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The solution to equation (2.4) may now be expressed as, 
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2.6: Hold phase 
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 represents efficient storage of the integral and multiplying by 

t

e


 modifies the 

results to the appropriate form. Writing the LHS of equation (2.9) as, 

        tgLtgtg
h

G

Ak
tg 













 2

1

2

2

~


     (2.10) 

with 2/
~

/ 1 hGAkL   and the right hand side of equation (RHS) (2.9), 

   


























 







h
htg

h
Ita

~

exp
~

2

~
2

22 .     (2.11) 

The solution to equation (2.9) may now be expressed as, 

3/1
3

2

2

2

3

22 1281128108 




  LL       (2.12) 

 
33

2

6 2

2

2 LL
tg 




.        (2.13) 

2.7: Stability: 

The stability of the numerical solver is governed by the standard stability parameter for an iterative 

solve assume, 

 ii gfg 1          (2.14) 
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the square root of the indentation depth at the next time step, 1ig , may be expressed as a function 

of the square root of the indentation depth at the ith time step, ig . The stability criterion may be 

determined as, 
i

i

g

g




 1  and 1  for stability. Differentiating equation (2.4) with respect to ig  

and rearranging to find  , 

 LggG

eghAk

ii

h

i

23

~
2

112

/
~













.       (2.15) 

Equation (2.15) will always be satisfied if h
~

 is large enough however the local truncation error of 

this code depends on )
~

( 2hO  and hence the time step, h
~

, can’t be arbitrarily large. During the ramp 

phase there are two extreme limits which can be considered easily, 

i) The spring stiffness is infinite, k . The position of the indenter is directly controlled 

and ig   and hVgi

~
1   , 

  LhV
hV

G

ehAk h

2
~

3

~

1

~
2

2

/
~



























     (2.16) 




































h

G

GhV

eh h

k
~

2
~

1

~
2

lim

1

2

/
~

     (2.17) 

Equation (2.17) ensures that it is always possible to obtain a stable time step, since as 

k ,   is finite, and hence a finite h
~

 can be determined. 

ii) The spring is perfectly compliant, 0k . The position of the indenter remains the same 

for all time, ig  and 1ig , 

 LG

ehAk h

23

~
2

2

/
~











       

(2.18) 

0lim
0





k

        

(2.19) 

Equation (2.19) ensures that for a perfectly compliant spring the code is absolutely 

convergent. 

Cases i) and ii) represent extreme cases and since by careful selection of the time step, h
~

, it is 

possible to obtain a stable numerical scheme in both cases; all cases can be stabilised by appropriate 

choice of the time step. 

2.8: Exploration of polynomial 

Equations (2.1), (2.4) and (2.9) have a similar form which allows for a simple representation of the 

polynomial. Writing these polynomials as, 
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RHStgLtg  ))(()( 2
       (2.20) 

where RHS  is the appropriate right hand side of equations (2.1), (2.4) and (2.9) and is a 

monotonically increasing function of t ; L  is 1/GAk  for equation (1) and 2/
~

/ 1 hGAk   for 

equations (2.4) and (2.9). A plot of equation (2.20) against )(tg  in figure 2.1, provides a simple and 

direct visualisation of the solution procedure implemented here and in the manuscript. The 

maximum indentation depth possible is V  and this imposes a limit on the maximum value of RHS

. 

 

Figure 2.1: Polynomial to determine the square root of the indentation depth plotted for different constants L, as the 
RHS increases the indentation depth also increases 

3. Errors 
 

The errors in the indentation affect the errors in the force, the equation relating the two has been 

supplied in the manuscript equation (9). However the equation is quite general and may be used to 

determine if a force or indentation depth relaxation is appropriate,  

  )()(' tuthth  , 

where  th  is the actual indentation depth, )(tu  is the error in the indentation depth and )(' th  is 

the measured indentation depth. The relative error in the indentation depth is then, 

   
 th

thth '
 . 

The relative error in the force measurement given the known indentation depth is supplied by, 
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     
  

   
  

     
    

   
    

     
  

   
  

     
    

   
    

























































 for  
/1

/

/1

/'''

 for  
/1

/

/1

/'''

'












t
Vth

Vth

Vth

Vtthth

thV

thth

thVk

thVkthVk

t
Vtth

Vtth

Vtth

Vtthth

thVt

thth

thVtk

thVtkthVtk

F

FF

where F  is the actual force and 'F  is the measured force. Since any real experiment is prone to 

errors these relative errors enable selection of the appropriate test to ensure that the desired results 

have minimum error. Stiff systems benefit from determination of the indentation depth over the 

force as     Vtth /1  tends to zero and hence small errors in the force result in large errors in the 

measured force curves. Similarly highly compliant systems tend to benefit from the determination of 

the force over the indentation depth as h  tends to zero. It is interesting to note that the optimal 

indentation conditions typically hover around the force and indentation criteria being equivalent and 

hence it makes little difference which is measured at optimum. However as the force is typically a 

derived quantity the indentation depth is preferred.  

4. Master curves for *

E  

 

There are two master curves that are essential to the work presented in the manuscript, effectively 

these curves provide the two parameters 
*

E  and 
*h  for a vast range of materials and system 

parameters. The generation of the equations and hence the master curves is detailed briefly here. 

4.1 Variations in 1G  and 2G  follow a simple rule between them and the optimal spring 

stiffness: 

 

Figure 4.1: Change in viscoelastic moduli, m 10R , 10V  nm/s, s 1  and s 01.0  

 

Figure 4.1 is plotted by varying the viscoelastic moduli 1G  and 2G  in the following manner: a 

logarithmic scale is chosen as follows, [1 2 3 4 5 6 7 8 9] x a10  Pa, that is a  is varied to generate 
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each series, figure 4.1 was constructed with the following range of values for 1G : 102a  and 

the variation in 2G : 103a . The dashed line in figure 4.1 is provided by the following equation 

   2

1

2/1

1

*

k

k

VG

Ak









        (4.1) 

where 
4

1 10 x 63.3 k  and 9091.02 k . Equation (4.1) enables for a constant   (relaxation 

parameter) and   (ramp duration) the material to be changed provided the appropriate 1k  and 2k  

values are known. The optimal conditions can be written as, 

 

 
  



 ,

,

2

1

2/1

1

*




VG

Ak
 

where   ,1  and   ,2  can at most be functions of   and  .  

4.2 Variations in  : 

To enable the material to be changed it is necessary to determine the variation as a result of the 

relaxation time   as the variation in 1G  and 2G  has already been determined in equation (4.1).  

 

Figure 4.2: Variation in the parameter 1k  as the relaxation time is varied 
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Figure 1.3: Variation in the parameter 2k  as the relaxation time is varied 

 

Figure 4.2 suggests that the functional form of 1k  is, 

5.2

9091.0
2/3

2/3

1






k , 

the denominator is not dimensionally consistent and this is due to the lack of   dependence; note 

that 1 s for the cases considered in figures 4.2 and 4.3. Figure 4.3 suggests the following 

functional form for 2k , 

2/12/1

2/1

2
1

1

1 













k . 

A note of caution should be made here as   is intricately coupled with   and it is unwise to assume 

that the full dependency on   is captured by fitting to these trends.  

4.3 Variations in  : 

The variations in   will be explored in this section. 
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Figure 4.4: Variations in   for the elastomer 

The following equation is used for the approximate fit in figure 4.4, 

   5.2

87.0
2/3

2/3

2/1

1

*








VG

Ak

 

 

this suggests the following general form for the full fit, 

   273.1

74.0
2/3

2/3

2/1

1

*








VG

Ak
. 

For completeness this is linked to the parameter 
*

E , 

 
)1(*

2/1

1*








Ak

VG
E . 

4.4 Master curve for 
*h : 

As with the mater curve above it is found that the important parameters are   and  . 
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Figure 4.5: Variation in 
*h  with 21 /GG . 

The dashed line in figure 4.5 is described by the following equation, 








1

x105.3 -6
*h . 

 

Figure 4.6: Variation in 
*h  with  / . 

The dashed line in figure 4.6 is described by the following equation, 

7.1

*

1.24

117






h . 

This suggests the following general equation, 
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7.1

*

1.24

1.24






h  

5. Linear programming 
 

The equations describing the ideal parameters are obtained by further optimising the previously 

optimal results. The optimal results for the relative relaxation indentation depth are of a form which 

enables a very simple and effective approach to optimisation; here it is detailed how this may be 

achieved. 

5.1: Linear programming for optimisation of parameters: 

Two claims regarding the ideal parameters have been made in the manuscript, these are proven 

here. 

1. The maximum velocity of the permissible indentation is corresponds to the ideal set of 

conditions 

2. The ideal parameters are obtained from a simple linear programming optimisation 

5.2: Maximum relative relaxation 

It should be noted that the optimisation of parameters is simply a linear programming problem. The 

ideal parameters are obtained by maximising the relative relaxation, 

*hV           (5.1) 

subject to the following constraints imposed by the method m  as the maximum and minimum of the 

velocity, radius, spring constant and force; mm VVV maxmin  , mm RRR maxmin  , mm kkk maxmin   and 

mm FFF maxmin   respectively. The relaxation force may be written in terms of the other parameters 

as, 

   
 21

*

2/12/3

21

*
*

3

16

GGE

RVGGh
khVF







 .      (5.2) 

As stated in the manuscript, 

 
 

 
 21

*

2/1

21

21

*

2/1

21

3

16

GGE

RVGG

GGAE

VGG
k










, (note 

*kk   in the manuscript, equation (15))  

(5.3) 

this enables the system to be fully described by specifying two parameters of the three unknown 

parameters  kVR ,,  (it is assumed that the material is known and the ramp duration is fixed). The 

signal to noise ratio may not be great enough to measure the relaxation and hence a further 

constraint is required to ensure that the experiment is measurable, 
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minVV           (5.4)
 

where minV  is the minimum velocity for the experiment to be measurable (see manuscript equation 

(19)). This problem is not a linear problem; however taking logarithms allows this problem to be 

written as a linear programming problem. There are two possible outcomes from this optimisation, 

either the solution is feasible, optimal parameters exists and is bounded or the solution is infeasible 

and it is not possible to obtain the optimal parameters using that method (atomic force microscopy, 

optical tweezers, etc). For a feasible solution the ideal parameters are simply the parameter values 

with the largest velocity in the feasible region (the intersection of all constraints). As the solution to 

the linear programming problem (logarithm of equation (5.1) and all of the constraints), and since 

this may be written as a simple two parameter problem, it may be represented graphically and a 

construction may be found in (§6). 

5.3: Linear programming construction 

Taking the logarithm of the equations and boundary conditions in the above section results in the 

following linear programming problem; the objective function is provided by 

 *

10log hV          (5.5) 

subject to the following constraints imposed by the method m  as the maximum and minimum of the 

velocity, radius, spring constant and force;      mm VVV max1010min10 logloglog  , mm RRR maxmin  , 

     mm kkk max1010min10 logloglog   and      mm FFF max1010min10 logloglog   respectively. The 

relaxation force may be written in terms of the other parameters as, 

       
  

















 21

*

2/12/3

21

*

10

*

1010
3

16
logloglog

GGE

RVGGh
khVF


 .   (5.6) 

Equation (5.3) enables the system to be fully described by specifying two parameters of the three 

unknown parameters       kVR 101010 log,log,log  (it is assumed that the material is known and 

the ramp duration is fixed). The signal to noise ratio may not be great enough to measure the 

relaxation and hence a further constraint is required to ensure that the experiment is measurable, 

   min1010 loglog VV 
 

.
       

(5.7)

 
This problem is a linear problem; and the ideal parameters can be obtained by the simplex method.1 

5.4 References 

 

1 D. A. Pierre, Optimization theory with applications, Dover, New York, 1986, ch. 5, pp. 204-

209. 

6. Construction of permissible indentation region 
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The construction of figures 12a) and 12b) in the manuscript are fully explained, however these 

figures are complicated figures and it is more illustrative to construct the figures step by step. Here a 

hydrogel case will be considered ( 10 s) when indented by an atomic force microscopy as 

described in the manuscript. 

6.1: Physical limits 

 

Figure 6.1: Physical limits on the radius and velocity for AFM 

Figure 6.1 demonstrates the basic ))log(),10/(log( VR  parameter space; at this stage the 

permissible region is the intersection of the physical limits of the method. 

 

Figure 6.2: The parabolic approximation is a model limit and not a physical limit, however it results in a physical limit if 

the theory is to be implemented and so is included in this section. The black line represents Rh 1.0max  , this 

imposes a maximum V for each radius. 

Figure 6.2 demonstrates the limit of the parabolic approximation Rh 1.0max  .  
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6.2: Calibration of spring constant axis 

Figure 6.3 indicates a pre calibrated spring constant axis has been added to figure 6.2. 

 

Figure 6.3: Addition of the spring constant axis 

At this stage it is not possible to tell if the axis is calibrated, since no information about the spring 

constant has been added to the figure. 

 

Figure 6.4: Lines of constant spring constant are plotted, in this case the limits of the currently commercially available 
spring stiffnesses are added these lines are used to calibrate the k axis. Equation (6.1) is used in the construction of the 

lines of constant k. 

Figure 6.4 demonstrates how the k axis is calibrated by setting the intercept of the k limits with the 

limit of the parabolic line. The following equation, 

 

 
 

 21
*

3

2/1

2116

21
*

2/1

21*

GGE

RVGG

GGAE

VGG
k









      

(6.1) 
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is rearranged to determine the velocity as a function of the optimal spring constant *k the, spring 

constant limits are then set equal to *k  and these are the lines of constant spring constant limits in 

figure 6.4. The k axis just needs to be shifted to ensure that the minimum and maximum spring 

constants may be read correctly at the intercept of the horizontal lines representing the k limits and 

the intercept of the parabolic limit line and the lines of constant k representing the k limits. Note if 

the velocity at the parabolic limit is used to calculate *k  the calibration of the k axis is simply 

obtained by shifting the k axis until the parabolic limit and the *k  line overlap. 

6.3: Possible experimental region 

Figure 6.5 reiterates that the possible experimental region is larger than the limited section 

permitted by the theory discussed in the manuscript. The region bounded by the green line is the 

possible experimental region, while only approximately half this region is permitted by the model. 

 

Figure 6.5: Possible experimental region, note that the force limits have not currently been applied 

 

6.4: Lines of constant force 

The force is provided by the following equation, 

**hkVF           (6.2) 

applying a similar approach to that detailed in step 2, the lines of constant force applied to the force 

limits may be added to figure 6.5 and this figure may be found in figure 6.6. Note that equation (6.2) 
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Figure 6.6: Addition of the limits of the force, lines of constant force 

 

6.5: Signal to noise limit 

The signal to noise limit indicates a minimum velocity required to determine the indentation from 

the noise. This is discussed at length in the manuscript and will not be repeated here. In this 

particular case this is highly restrictive and only a small region is permitted by the limits of the model 

and the experimental indentation method. The maximum velocity corresponds to the following ideal 

system parameters ( 6394.2V  µm/s, 8.915R  nm, 736.2* k  N/m). See figures 6.7 and 6.8, 

as an indication of the effect of ramp duration. Not only the permitted/possible regions are 

displayed in figures 6.7 and 6.8. 

 

Figure 6.7: Permitted region ( 10 s) 
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Figure 6.8: Permissible region, 1.0 s 

6.6: Typical experimental situation: 

Some notes should be made with regards to available cantilevers for AFM; cantilevers are expensive, 

require careful calibration, may break and it is very difficult to construct a cantilever of a specific 

spring constant. As such many laboratories have a range of well calibrated AFM cantilevers, if the 

ideal spring constant is not supplied by one of the available cantilevers it is unlikely that a new 

cantilever will be obtained. Provided a line of constant k , corresponding to one of the spring 

constants passes through the permissible region this is sufficient for the effective determination of 

material parameters. 

7. Poroelasticity 
 

A compliant poroelastic [compressible elastic matrix and incompressible fluid forming an isotropic 

material] problem [fixed end drive] provides the following equations for a poroelastic material1, 

ijkkijijij

G
Gp 






21

2
2


       (7.1) 

 
  

 kk

u

uG
p 











2121

2
2

      (7.2) 

ii pq ,          (7.3) 

Equilibrium equations, 

0, jij          (7.4) 

Continuity equations, 
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0, 



iiq

t


         (7.5) 

Assuming uniaxial strain, 

 
p

G





 






21

12
,        (7.6) 

the coefficient of diffusion is given by, 

  

   u

uG
D




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for  t0  the pore pressure is given by 
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and for t  
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the boundary conditions are provided by, 
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The following change of variables are invoked, 
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then, 
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The solution to equation (7.12) is, 
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hence once the indentation depth is known as a function of time the pore pressure may be 

evaluated. The solution to equation (7.13) requires the solution provided in equation (7.14), 
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It should be noted at this point that if D  is constant than this pressure may be written as a series of 

exponentials either directly or by assuming that: 
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since any differentiable function may be expressed in such a series. Given that )(th  is bounded as 

t , 0i . Now an equivalent relationship exists between the decaying exponentials series 

and an infinite Prony series, as such all results for the Prony series extend to poroelastic models by 

taking the modes which respond on the time and length scales of interest. Despite the simplicity of 

this approach it is valid for all bounded indentation depths even for more complicated behaviour. 
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8. Physical models and an equivalent viscoelastic material 
 

Here we consider the equivalent viscoelastic material for a proposed physical model. Since the 

viscoelastic model can be viewed as a mathematical convenience for many materials and is open to 

the criticism that it ignores physical models, any equivalence between a generic physical model 

(deliberately left vague) and a viscoelastic material will allow the results in the manuscript to be 

carried over to the physical model with minimal effort.  This section assumes that a proposed 

physical model has been solved for the problem under consideration. For example a poroelastic 

material is often considered, the non-dimensional indentation depth may be written in a form 

similar to, 







1

1)(
n

tneth


, for the relaxation phase [note all the results here may be repeated for 

ramp phases if the series is extended to include complex error functions]. 

Assuming the solution to the physical model is known and takes the following form: 
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The viscoelastic model may be written as: 
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Further assume that, 
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Substituting equations (8.1), (8.2) and (8.4) into equation (8.3) and equating powers of exponents 

reveals, 
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  for each n . 

This implies that KLN   to ensure there are N  equations and N  unknowns. We may therefore 

deduce that .NL  Further it is hence possible to uniquely determine the parameters for an 

equivalent viscoelastic material where the indentation data is in perfect agreement with the physical 

model. It should be noted that other phenomena may not be predicted by such an approach, i.e. an 

equivalent viscoelastic material for a poroelastic material will not have migration of fluid but this is 

not required to implement the results in the manuscript. Hence there are no technical barriers to 

describing any physical model as an equivalent viscoelastic material for the purposes discussed in 

the manuscript.  
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