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Microscopy Experiments 

Coplanar quadrupole gold thin film electrodes (Fig. S1) were patterned on glass 
microscope coverslips (50 mm  24 mm  ~150 mm, Corning, Corning, NY) that were sonicated 
in acetone (Fisher Scientific, Pittsburgh, PA) for 30 minutes, sonicated in isopropanol (IPA, 
Fisher Scientific, Pittsburgh, PA) for 30 minutes, rinsed with copious amounts of deionized (DI) 
water, sonicated in 0.1 M potassium hydroxide (KOH, Fisher Scientific, Pittsburgh, PA) for 30 
minutes, again rinsed with copious amounts of DI water, and dried with nitrogen prior to 
patterning. The hyperbolic quadrupole electrodes were fabricated by spin coating photoresist 
(S1813, Shipley Company, Marlboro, MA) onto microscope cover slips, UV exposure through a 
chrome photomask, and physical vapor deposition of a 10 nm chromium adhesive layer and a 40 
nm gold layer. The photoresist liftoff was accomplished with agitation in 1165 Remover (Shipley 
Company, Marlboro, MA). The electrode tips are separated by ~100 m. Prior to 
experimentation, coverslips with patterned quadrupole electrodes were sonicated in acetone for 
15 minutes and IPA for 15 minutes, rinsed with copious amounts of DI H2O, and dried with N2.  

Nominal 3.13 μm diameter SiO2 colloids (Bangs Laboratories, Fishers, IN) were 
sedimentation fractionated in DI water to minimize polydispersity in experiments. Prior to each 
experiment, the fractionated colloidal particles in DI water were centrifuged and redispersed in 
0.1 mM or 1 mM sodium hydroxide (NaOH, Sigma Aldrich, St. Louis, MO) five times to 
remove excess DI water and obtain dispersions of fractionated SiO2 and NaOH. 

Experiments were performed in batch cells consisting of Sylgard polydimethylsiloxane 
(PDMS, Dow Corning, Midland, MI) o-rings. Prior to experiments the o-rings were sonicated in 
IPA for 15min, rinsed with IPA, and blotted dry with lens paper (4”  6” Fisher Scientific, 
Pittsburgh, PA). To construct batch cells, PDMS o-rings were coated with vacuum grease (Dow 
Corning, Midland, MI) and sealed between the coverslip with the patterned quadrupole electrode 
and a glass coverslip (18 mm  18 mm  ~150 mm Corning, Corning, NY). 90 L of the 
colloidal particle dispersion was dispensed into the batch cell and allowed to sediment for five 
minutes prior to sealing. 22 gauge magnet wires (Radio Shack, Fort Worth, TX) were attached to 
the coplanar electrode using conductive carbon tape (Ted Pella, Redding, CA). The coplanar 
electrode was then connected in series with a function generator (Agilent Technologies, Santa 
Clara, CA) with one lead attached to the north-south poles and another to the east-west poles. 
Table S1 summarizes experimental parameters used in PT calculations and MC simulations. 
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Table S1. Parameters for PT calculations, MC simulations, and experiments. (a) colloidal 
particle size,15, 16 (b) Debye screening length, (c) particle and wall Stern potential,1, 2 (d) peak 
voltage applied to electrodes, (e) Clausius-Mosotti factor for an AC field frequency at 1 MHz,3-5 
(f) medium dielectric permittivity, (h) electrode spacing.6-8 

Variable Theory/Simulation Experiment 
a/nma 1460 1400 
-1/nmb 0, 10, 30, 100 10, 30 
/mVc -50.0 -50.0 
Vpp/V

d V(n, κ-1) 1.0, 2.0, 3.5, 6.0, 0.7V(n, 10nm) 
fCM

e -0.2287 -0.2287 
m/0

f 78 78 
dg/mh 92.95 92.95 

Feedback Control over System Size 

Controlling the particle number in the quadrupole has been reported by us previously.8 In 
the experiments conducted in 0.1 mM NaOH, we used this ability to reduce the number of excess 
particles in the quadrupole upon sedimentation to a smaller specified value within 10 particles. 
Briefly, the mechanism by which particles are removed from the quadrupole center employs 
direct current (DC) biases applied to the electrodes, resulting in simultaneous electrophoresis and 
electroosmosis (EPEO) to transport particles out of the quadrupole. EP transports negatively 
charged SiO2 particles away from anodes towards cathodes in DC and low frequency fields, 
whereas EO moves particles in the opposite direction to oppose EP. As the particles travel out of 
the quadrupole center over to the electrode edges the particle number within the quadrupole 
center is reduced. Control algorithms coded in MatLab were used to remove particles from the 
quadrupole in batches of <25 particles at a time by making step changes to the applied AC and 
DC voltages based on the current number of particles. 

Colloidal Potentials 

We model the interaction energy between colloids in the thin film quadrupole electrode 
as a combination of electrostatic double layer (DLVO), induced dipole-inhomogeneous electric 
field (IDIF), and induced dipole-induced dipole (IDID) interactions. The gravitational potential 
acts in the direction normal to the underlying wall and helps confine colloids in a monolayer. As 
such, the net potential energy for the system is given by, 

         , , , , ,
1 ,

n
pf pp pp

net de i e i j dd i j
i i j

u u u u
  

   r r r r  (S1) 

where r is the 3n dimensional vector with position information for all particles in the system, 
upp

e,i,j(r) is the electrostatic potential between particles i and j, upp
dd,i,j(r) is the IDID potential 

between particles i and j, and upf
de,i(r) is the IDIF potential of particle i. The particle-particle 

electrostatic potential, upp
e,i,j(r), is given by,  

    , , exp 2pp pp
e i j ij iju r B r a      (S2) 
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where rij is the center-to-center distance between particles, a is the particle radius,  is the solvent 
dielectric permittivity, k is Boltzmann's constant, T is absolute temperature, e is the elemental 
charge, p is the colloid Stern potential, w is the wall Stern potential, Cl is the bulk electrolyte 
concentration of species l, zl is the valence of species l, a is the particle radius, -1 is Debye 
length, and NA is Avogadro's number. 

IDIF and IDID interactions have been studied on the kT scale by Juarez, et al.3-5 The IDIF 
interactions can be described by, 

     2

1
,

0

2 ipf
de i cm

E
u kT f f

E   
   

 

r
r  (S5) 

where ri is the position of particle i, k is Boltzmann's constant, T is the temperature, f is a 
concentration dependent factor due to shielding,9 fcm is the alternating current (AC) electric field 
frequency dependent Clausius-Mosotti factor,10  is the non-dimensional field strength, given by 
=ma3(fcmE0)

2/kT, where m is the medium dielectric constant, E(ri) is the electric field peak 
magnitude and E0 is the nominal electric field magnitude given by E0=8-0.5Vpp/dg, where Vpp is 
the peak-to-peak AC voltage and dg is the gap width (between opposite electrodes). IDID 
interactions are given by, 

      
3 2

, , 2
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cos ipp
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where P2(cosij) is the second Legendre polynomial and ij is the angle between the line that 
connects the two particle centers and the electric field. Finally, the AC electric field in a 
quadrupole array is described by,11 
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 (S7) 

Perturbation Theory 

Perturbation theory (PT) was used to compute particle density profiles in the quadrupole 
electrode and determine the voltage at which all particles were crystallized. Table S1 lists the 
interaction potential parameters used in the PT calculations. The PT is based on an equilibrium 
force balance in polar coordinates, 

      1
R F R R

R R


 


 (S8) 

where R is distance from the center of the quadrupole array,  is the colloid osmotic pressure, 
(R) is the colloid two-dimensional density profile, and F(R) is the external force acting on 
colloids from their interaction with the AC electric field3-5 given by, 
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    ,
pf
de i

d
F R u R

dR
   (S9) 

The colloid osmotic pressure, (), is related to the colloid number density, , by, 

     kTZ      (S10) 

where Z(()) is the compressibility factor, which depends on the colloid area fraction . 
is related to the colloid number density by, =a2. The compressibility factor for hard 
disc colloidal fluids, ZF(),12 and for hard disk colloidal crystals, ZX(),13 is given by,  

    
2

2
1 1

8FZ
   

   
 

 (S11) 

   12 0.67 1.9XZ       (S12) 

where =(CP/)-1 and CP=0.90714, 15 is the close packing area fraction for hard disks. The use 
of one compressibility factor over the other depends on the local area fraction. Eq (S12) is used 
for >0.723, and Eq. (S11) is used for <0.686.15 

 To include the effect of colloidal interactions beyond that of hard disks, we use PT to 
approximate repulsive potentials that effectively changes the size of particles to account for the 
soft repulsion past a hard wall interaction. This effective particle diameter, 2aeff, is given by,16 

   1 exp pp
eff e

a

a a u r kT dr


       (S13) 

where a corresponding effective colloid area fraction, eff=aeff
2 can also be computed. 

PT estimations of density profiles are done by numerically solving Eq (S8) and do not 
include the effect of IDID interactions, which have been shown to cancel out in an isotropic 
crystal phase.17 This solution is obtained by assuming the particle density at a position close to 
the center of the gap and solving for the density at a position R away using a finite difference 
approximation of Eq (S8). The initial density guess is iterated until the resulting density profile 
corresponds to the correct number of particles in the system, estimated by, 

  
0

2N dR R R 


   (S14) 

Monte Carlo Simulations 

Monte Carlo (MC) simulations in the canonical ensemble are performed for n=75, 100 
150, 200, 250 and 300 colloidal particles for varying applied voltages. Table S1 lists the 
interaction potential parameters used in all simulations. All cases explored correspond to 
conditions of negative values of fCM so colloids are pushed towards the center of the channel 
rather than towards the electrodes.3-5 These simulations were run for 107 steps with an initial 
equilibration time of 2x106 steps. Configurations were stored every 104 steps and used to 
estimate ensemble averaged density profiles. 
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System Size Dependent Voltage Curve Fit 

 The results from PT calculations give the voltage at which the system will crystallize for 
various system sizes, n, and Debye lengths, -1, and appear in Fig 3a and S3. To obtain a general 
expression, the following computations were made: (1) Linear expressions were fit to each of the 
log(V) as a function of log(n) data sets in Fig 3a to obtain the slope, b0. (2) A single, two-term 
power law expression was fit to the voltage vs. system size in Fig S2 at each of the four Debye 
lengths using the b0 values as the power. The result is a general expression for the voltage, V(n), 
as a function of system size at the specified Debye length with the form, 

   0
0

bV n a n   (S15) 

where a0 and b0 are constants with values at each Debye length that are given in Table S2. (3) 
Regression analysis was then utilized to fit a linear expression to each of the a0 and b0 vs. -1 
data sets in Table S2. The calculated expressions for each coefficient in Eq. (S15) are, 

 

 
 

1 3 1
0

1 4 1
0

7.15 4.10 10

0.219 4.24 10

a

b

 

 

  

  

  

   
 (S16) 

By inserting the expressions for a0(-1)  and b(-1) in Eq (S16) for the individual coefficients a0 
and b0, in Eq (S15), respectively, the expression for the voltage required for crystallization based 
on system size and electrostatics that appears in Eq (1) of the manuscript is obtained. 

Table S2. Parameters a0 and b0 obtained for the voltage as a function of system size, V(n) (Eq 
(S15)), from regression analysis fits to the data in Figs. 3 and S2 at each Debye length, -1. 

-1 (nm) a0 (V) -b0 (10-3)
0 7.22 0.22 
10 7.14 0.22 
30 7.22 0.23 

100 7.57 0.26 

Order Parameters 

To characterize particle configurations, the degree of global order in particle 
configurations obtained from experimental particle coordinates was estimated using,18-20 

 
,

6
6,

1,

1 C j

jk

N
i

j
kC j

e
N




   (S17) 

 6 6,

1
j

jj
    (S18) 

where 6,j is the six-fold bond orientation order parameter of particle j, NC,j is the number of 
neighbors within the first g(r) peak (coordination radius) of particle j, jk is the angle between 
particle j and each neighboring particle with an arbitrary reference direction, and 6 is the 
average local bond orientation order determined by averaging over all particles, which produces 
values between zero and one. Connectivity between crystalline particles, 6, j , is given by,  
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where *
6, j  is the complex conjugate of 6, j . This is used to compute the local order parameter 

for six-fold connectivity, C6,j, which produces integer values between zero and six. The number 
of crystalline nearest neighbors, C6,j, for particle j is determined using the criterion,21  

 
 

6,

6,
1 6,

1 0.32

0 0.32

CN j
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j
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
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 
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  6 6
1

1 N

i

C C i
N 
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where C6 is the average local six-fold connectivity order, computed by averaging over all 
particles. This can be normalized by C6HEX, the six-fold connectivity order for 2D hexagonally 
close packed particles with a hexagonal morphology. The normalized average local six-fold 
connectivity order, C6*, produces values between zero and one and is given by, 

  1 2
6 6 3

HEX
C n S S   (S22) 

        1 2
1 2 1 3 1 1 4S n        (S23) 

 
*

6 6 6 HEX
C C C  (S24) 

Because of particle polydispersity uncertainty in locating particle centers due to noise, 
particles were considered to be nearest neighbors if they fell within an upper and lower value of 
the coordination radius. The coordination radius, aeff=1575 nm was obtained from the first g(r) 
peak and is equal to the core radius of the particle, a, plus several Debye lengths, x,  

 1
effa a x    (S25) 

where a is the particle radius and was found to be equal to 1400 nm from ensemble Total Internal 
Reflection Microscopy (TIRM)1, 2 and x was found to be equal to 5.83 for 0.1 mM NaOH (-1=30 
nm) and 17.5 for 1 mM NaOH (-1=10 nm). The upper bound for the coordination radius is 
calculated from the location of the first valley in the g(r) and is equal to, 

  1 3ub
eff effa a   (S26) 

and the lower bound is computed using a thermal correction factor, TCF=0.92, as, 

 lb
eff effa TCF a   (S27) 

Smoluchowski Equation Fitting Procedure 

Here we outline a method to obtain W(X) and D(X) from 2D trajectory data using 
Bayesian inference (BI).22, 23 BI analysis follows a method that was reported previously23 for a 
system with dynamical behavior described by two order parameters. The spatially continuous Eq. 
(2) in the main manuscript text can be converted into a spatially discrete master equation as, 
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 (S28) 

where pi(t) is the probability of finding the system in a region of size X(1)X(2) around the point 
i, located in Xi=(X(1)

l, X
(2)

m) at time t, and the elements of the transition rate matrix, R, express 
probability transition rates between adjacent regions. Eq. (S28) can be solved in terms of a 
matrix exponential of the rate matrix as, 

      (1) (2), , 0t
i l m ij jj

p t p X X t e p   R  (S29) 

where pj(0) is the initial condition for Eq. (S28). The matrix exponential etR defines transition 
probabilities between regions i, located in X = Xi, and j, located in X = Xj,  as, 

  , | , 0 t
i j ijp t e RX X  (S30) 

Given that the master equation, Eq. (S28), obeys detail balance, the number of parameters can be 
reduced. This condition states that Rijp

eq(Xj) = Rjip
eq(Xi), where, 

   0

( )
expeq i

i

W
p p

kT
    

X
X  (S31) 

where p0 is a constant prefactor. Additionally, the elements of the rate matrix R = [Rij] satisfy Rij 
≥ 0 for i ≠ j, Rij  < 0 for i = j, and jRij = 0. Finding the solution of Eq. (S30) is accomplished by 
following the procedure described by Hummer.22 The relation between the rate matrix R and 
Smoluchowski equation coefficients, is given by,23  
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and f1 and f2 are local "forces" given by, 

             
   
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and D(u)(v) is the uv-component of the diffusivity tensor. The Smoluchowski equation 
coefficients, W(X) and D(X), can be estimated from a set of dynamic observations by estimating 
the variability of the likelihood function, 

  , | , 0i k jL p t
  



 X X  (S38) 

where  refers to a realization of the system. This variability is sampled based on the Metropolis 
Monte Carlo algorithm varying the values of W(X) and D(X). From W(X) and D(X), the master 
equation parameters peq and R are calculated using Eqs. (S31), (S32)-(S35). These parameters 
are used to numerically solve the equivalent master equation to get transition probabilities, 
p(Xi,tk|Xj,0). The negative log-likelihood (-lnL) is used as the energy function in the Monte Carlo 
procedure as, 

    ln , | ,0 ln , | ,0i k j i k j
k j i

L N t p t   X X X X  (S39) 

where N(Xi,tk|Xj,0) is a jump matrix that has information of observed number of jump between 
state Xj and state Xi after tk time. The algorithm output provides a range of converged values for 
both functions W(X) and D(X) from which the average and standard deviation can be estimated. 

As far as implementation details, jump matrices, N(Xi,t|Xj,0), were constructed by 
counting the number of transitions from all initial positions to all final positions in X-phase space 
for different jump times, t. Jump times ranged from t = 6,250 s to t = 31,250 s. X space was 
discretized to have a total number of regions equal or less than 100. An initial guess for W(X) 
was based on the Boltzmann inverted FEL, Wguess(X)=-ln[h(X)], where h(X) denotes the 
sampling histogram of states from experiment data. The initial guess for D(X) was set to a 
constant of 10-10 for all values and components. Metropolis Monte Carlo runs, varying W(X) and 
D(X), used a given jump matrix, N(Xi,t|Xj,0), and were run for 108 steps with an output writing 
frequency of 104 steps. Reported values of W (X) and D(X) were calculated as the mean value of 
the resulting run after the energy function (Eq (S39)) reached a plateau. The resulting run also 
had information on the uncertainty of the Smoluchowski equation parameters, which were 
estimated as the variance of the values used to determine the reported mean. 
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Figure S1 

  

 

 

 

Experimental configurations for silica colloids in high frequency AC electric fields and radial 
dependence of electric field expression used in simulation calculations. (A) Au film quadrupole 
electrodes on a glass microscope slide with PDMS o-ring containing an aqueous colloidal 
dispersion. Electrodes are connected in series to a function generator operated by computer 
software. (B) Optical microscopy/charged coupled device image of quasi-2D crystal of 3 μm 
silica colloids in quadrupole center. (C) Non-dimensional electric field magnitude in the 
quadrupole as a function of distance from the center of the gap, R. (D) Contour plot of electric 
field used in simulations with linear spectrum scale from E/E0 = 0 to E/E0 = 7. 
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Figure S2 

 

 

 

 

Voltage, V, required for quasi-2D crystallization from PT calculations at system sizes, n, equal to 
75, 100, 150, 200, 250, and 300 particles. Calculations conducted at each system size for ionic 
strength conditions of -1=0 nm (black circles), 10 nm (red inverted triangles), 30 nm (green 
squares), 100 nm (yellow diamonds). Solid lines correspond to V(n) obtained from fitting a 
single, two-term power law expression to the points from PT results at each of the four Debye 
lengths using regression analysis. Lines and points have the same color at a given Debye length. 
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