Supplementary material

for

Adsorption and Micellization Behaviors of Gemini Surfactants with Pyrrolidinium Head Groups: Effect of the Spacer Length

Bo Cai, Jinfeng Dong, Li Cheng, Zan Jiang, Yi Yang, Xuefeng Li*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072,

PR China.

*Corresponding author Email: lixf_whu@163.com

Scheme S1. The synthesis route of the Gemini surfactant C_{12} - C_s - C_{12} PB.

Scheme S1 shows the procedure for the synthesis of cationic Gemini surfactants with pyrrolidinium head groups, C_{12} - C_s - C_{12} PB. 1-Bromodecane (0.1mol) was firstly added to acetonitrile (50 ml) solution of pyrrolidine (0.12 mol) at room temperature at stirring. After that, sodium hydroxide and catalytic amount of potassium iodide was added to the above solution. The reaction mixture was stirred at reflux temperature for 48 hours. After the reaction finished, the solvent was removed by spinning evaporation. The residue was purified by flash column chromatography (silica, 1:3 EA/CH₂Cl₂, 0.5%NH₃.H₂O, $R_f = 0.3$), the colorless liquid products N-dodecyl pyrrolidine was obtained, yield 80%. Then, the obtained N-dodecyl pyrrolidine (0.08mol) was dissolved in 40 ml isopropanol in a 100 mL volume flask, and 1, s - dibromo butane (0.027 mol in 20ml isopropanol) was added gradually. The reaction mixture was stirred at reflux temperature for 48-96 hours. After removal of isopropanol, the product purified several times by recrystallized in the mixtures of ethanol/acetone (1:10). The products were characterized by employing ESI-MS (P/ACE MDQ), ¹HNMR spectra, ¹³CNMR spectra (Mercury VX-300) in CDCl₃, and Element Analysis (VarioEL III). The results prove that they are all objective products.

(1) 1, 1'-(propane-1, 3- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂-C₃-C₁₂PB)

White power, yield: 83%. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, 6H, **CH**₃), 1.26 (m, 36H, CH₃–(**CH**₂)₉–CH₂–CH₂–CH₂–N), 1.79(m, 4H, CH₃–(CH₂)₉–**CH**₂–CH₂), 2.14-2.40 (m , 8H, N-CH₂-**CH**₂ in pyrrolidine), 2.68 (m, 2H, N-CH₂-**CH**₂ -CH₂-N), 3.26-4.01 (m, 16H, N-**CH**₂). ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.36$, 20.55, 22.74-22.90, 23.94, 26.68, 29.55-29.84, 32.12, 57.42, 61.21, 63.40. ESI-MS; [M-Br⁻] C₃₅H₇₂BrN₂⁺: Calcd: 599.4, Found: 599.3. Elemental analysis; Calcd(%): C, 61.75; H, 10.66; N, 4.11. Found: C, 60.83; H, 10.54; N, 3.97.

(2) 1, 1'-(butane-1, 4- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂-C₄-C₁₂PB).

White power, yield: 87%. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, 6H, **CH**₃), 1.26 (m, 36H, CH₃–(**CH**₂)₉–CH₂–CH₂–CH₂–N), 1.79(m, 4H, CH₃–(CH₂)₉–**CH**₂–CH₂–N)), 2.20 (m, 8H, N-CH₂-**CH**₂-**CH**₂ in pyrrolidine), 2.62 (m, 4H, N-CH₂-**CH**₂-**CH**₂-CH₂-N), 3.26-4.01 (m, 16H, N-**CH**₂). ¹³C NMR

(75 MHz, CDCl₃): δ = 14.45, 21.28, 23.00, 23.90, 26.88, 29.47-29.91, 32.21, 60.19, 61.26, 63.40.
ESI-MS; [M-Br⁻] C₃₆H₇₄BrN₂⁺: Calcd: 613.5, Found: 613.3. Elemental analysis; Calcd(%): C, 62.23; H, 10.74; N, 4.03. Found: C, 61.07; H, 10.53; N, 3.98.

(3) 1, 1'-(hexane-1, 6- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂-C₆-C₁₂PB).

White power, yield: 90%. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, 6H, **CH**₃), 1.26 (m, 36H, CH₃–(**CH**₂)₉–CH₂–CH₂–CH₂–N), 1.79(m, 4H, CH₃–(CH₂)₉–**CH**₂–CH₂–CH₂, 4H, N–CH₂–CH₂–(**CH**₂)₂–CH₂–CH₂–N), 2.07 (m, 8H, N-CH₂-**CH**₂ in pyrrolidine), 2.44 (m, 4H, N-CH₂-**CH**₂-CH₂-C

(4) 1, 1'-(octane-1, 8- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂-C₈-C₁₂PB).

White power, yield: 89%. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, 6H, **CH**₃), 1.26 (m, 44H, CH₃–(**CH**₂)₉–CH₂–CH₂–N, N–CH₂–CH₂–(**CH**₂)₄–CH₂–CH₂–N), 1.79(m, 4H, CH₃–(CH₂)₉–**CH**₂–CH₂–N), 2.20 (m , 8H, N-CH₂-**CH**₂ in pyrrolidine), 2.62 (m, 4H, N–CH₂–**CH**₂–(CH₂)₄–**CH**₂–CH₂–N), 3.25-4.02 (m, 16H, N-**CH**₂). ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.32$, 22.25, 22.84, 23.72, 25.89, 26.36, 28.12, 29.48-29.75, 59.75, 60.31, 63.18. ESI-MS; [M-Br⁻] C₄₀H₈₂BrN₂⁺: Calcd: 669.5, Found: 669.3. Elemental analysis; Calcd(%): C, 63.98; H, 11.01; N, 3.73. Found: C, 63.54; H, 10.85; N, 3.59.

(5) 1, 1'-(decane-1, 10- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂-C₁₀-C₁₂PB).

White power, yield: 77%. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, 6H, **CH**₃), 1.26 (m, 48H, CH₃–(**CH**₂)₉–CH₂–CH₂–N, N–CH₂–CH₂–(**CH**₂)₆–CH₂–CH₂–N), 1.79(m, 4H, CH₃–(CH₂)₉–**CH**₂–CH₂–N), 2.20 (m , 8H, N-CH₂-**CH**₂ in pyrrolidine), 2.52 (m, 4H, N–CH₂–**CH**₂–(CH₂)₆–**CH**₂–CH₂–N), 3.36-3.93 (m, 16H, N-**CH**₂). ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.23, 22.12, 22.74, 23.63, 26.27, 26.49, 28.59, 28.79, 29.27-29.65, 31.95, 59.70, 59.95, 63.12.$ ESI-MS; [M-Br⁻] C₄₂H₈₆BrN₂⁺: Calcd: 697.6, Found: 697.4. Elemental analysis; Calcd(%): C, 64.76; H, 11.13; N, 3.60. Found: C, 64.52; H, 10.95; N, 3.48.

(6) 1, 1'-(dodecane-1, 12- diyl)bis(1-dodecyl pyrrolidinium) bromide ($C_{12}-C_{12}-C_{12}PB$). White power, yield: 81%. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, 6H, **CH**₃), 1.26 (m, 52H, CH₃-(CH₂)₉-CH₂-CH₂-N, N-CH₂-CH₂-(CH₂)₈-CH₂-CH₂-N), 1.79(m, 4H, CH₃-(CH₂)₉-CH₂-CH₂-N), 2.20 (m , 8H, N-CH₂-CH₂ in pyrrolidine), 2.42 (m, 4H, N-CH₂-CH₂-(CH₂)₈-CH₂-CH₂-N), 3.39-3.94 (m, 16H, N-CH₂). ¹³C NMR (75 MHz, CDCl₃): δ = 14.32, 22.15, 22.84, 23.77, 26.45, 29.08-29.75, 32.04, 59.70, 59.96, 63.20. ESI-MS; [M-Br⁻] C₄₄H₉₀BrN₂⁺: Calcd: 725.6, Found: 725.5. Elemental analysis; Calcd(%): C, 65.49; H, 11.24; N, 3.47. Found: C, 65.02; H, 11.06; N, 3.29.

(7) 1, 1'-(tetradecane-1, 14- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂-C₁₄-C₁₂PB).

White power, yield: 72%. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, 6H, **CH**₃), 1.26 (m, 56H, CH₃–(**CH**₂)₉–CH₂–CH₂–N, N–CH₂–CH₂–(**CH**₂)₁₀–CH₂–CH₂–N), 1.79(m, 4H, CH₃–(CH₂)₉–**CH**₂–CH₂–N), 2.10 (m , 8H, N-CH₂-**CH**₂ in pyrrolidine), 2.32 (m, 4H, N–CH₂–**CH**₂–(CH₂)₁₀–**CH**₂–CH₂–N), 3.39-3.94 (m, 16H, N-**CH**₂). ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.32$, 22.12, 22.84, 23.71, 26.57, 29.34-29.75, 32.05, 59.68, 59.87, 63.22. ESI-MS; [M-Br⁻] C₄₆H₉₄BrN₂⁺: Calcd: 753.7, Found: 753.6. Elemental analysis; Calcd(%): C, 66.16; H, 11.35; N, 3.35. Found: C, 66.11; H, 11.08; N, 3.22.

(8) 1, 1'-(hexadecane-1, 16- diyl)bis(1-dodecyl pyrrolidinium) bromide (C₁₂-C₁₆-C₁₂PB).

White power, yield: 73%. ¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, 6H, **CH**₃), 1.26 (m, 60H, CH₃–(**CH**₂)₉–CH₂–CH₂–N, N–CH₂–CH₂–(**CH**₂)₁₂–CH₂–CH₂–N), 1.75(m, 4H, CH₃–(CH₂)₉–**CH**₂–CH₂–N), 2.10 (m , 8H, N-CH₂-**CH**₂ in pyrrolidine), 2.30 (m, 4H, N–CH₂–**CH**₂–(CH₂)₁₂–**CH**₂–CH₂–N), 3.39-3.94 (m, 16H, N-**CH**₂). ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.30$, 22.10, 22.82, 23.69, 26.53, 29.47-29.73, 32.03. ESI-MS; [M-Br⁻] C₄₈H₉₈BrN₂⁺: Calcd: 781.7, Found: 781.7. Elemental analysis; Calcd(%): C, 66.79; H, 11.44; N, 3.25. Found: C, 66.27; H, 11.22; N, 3.05.

Figure S1. The $\kappa \sim C$ and $\Lambda \sim C^{0.5}$ curves of C₁₂-C₄-C₁₂PB (a), C₁₂-C₆-C₁₂PB (b), C₁₂-C₈-C₁₂PB (c),

 C_{12} - C_{10} - C_{12} PB (d).

Figure S2. The $\kappa \sim C$ curves of $C_{12}-C_3-C_{12}PB$ (a), $C_{12}-C_4-C_{12}PB$ (b), $C_{12}-C_6-C_{12}PB$ (c), $C_{12}-C_8-C_{12}PB$ (d), $C_{12}-C_{10}-C_{12}PB$ (e) and $C_{12}-C_{12}-C_{12}PB$ (f) at different temperature.