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This supporting material contains: 
 
(1) Water shows expected behaviors near a hydrophilic and hydrophobic surface in the absence of DNA; 
(2) Single-stranded DNA (ssDNA) tetramers assume an upright conformation (perpendicular to the surface) at a specific 

distance from the surface; 
(3) ssDNA adsorbs to a hydrophobic surface in a ‘bases-down’ orientation, but there is no preferential orientation of the 

ssDNA on a hydrophilic surface; 
(4) More favorable energy per ssDNA-surface contact area on OEG than on OMe indicates greater strength of 

hydrophilic interactions compared to hydrophobic interactions; 
(5) Number of water-water hydrogen bonds per water as a function of surface distance in the absence of DNA; 
(6) Water-DNA hydrogen bonds have a higher duration than water-water hydrogen bonds; 
(7) Cytosine oligomers show similar behavior to adenine oligomers (cf. Figure 7 in main text); 
(8) Additional comparisons of ssDNA dimers and tetramers showing expected and unexpected differences; 
(9) Additional details of surface construction and relaxation; 
(10) Additional details of production simulation protocol; 
(11) Diagram of atoms used to define nucleobase plane; 
(12) Details of calculations used for analysis; 
(13) Discussion of limitations to our approach 
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(4) More favorable energy per ssDNA-surface contact area on OEG than on OMe indicates greater strength of 
hydrophilic interactions compared to hydrophobic interactions 

 

Figure S5. Total non-bonded energy (van der Waals and electrostatic) between ssDNA and the surface divided by the 
contact area between ssDNA and the surface. Only DNA-surface distances less than 10 Å are shown to omit regions with 
very low DNA-surface contact area, which lead to physically unreasonable values of this quantity (i.e., long-range 
interactions do not require direct contact, leading to non-finite values when the contact area is zero). Energy values are 
negative because the energy between the ssDNA and the surfaces is favorable. The average value on OMe is 
approximately -0.125 kcal/mol/Å2, while the average value on OEG is approximately -0.25 kcal/mol/Å2, showing that the 
energy per contact area on OEG is approximately double that on OMe. We interpret the greater energy per contact area 
with OEG as evidence that hydrophilic interactions have a stronger enthalpic component than hydrophobic interactions for 
these systems. 
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(5) Number of water-water hydrogen bonds per water as a function of surface distance in the absence of DNA 

 

Figure S6. Number of water-water hydrogen bonds per water molecule in the absence of ssDNA as a function of surface 
distance. The average bulk value (surface distances > 5 Å) with our geometric criteria is approximately 3.7 water-water 
hydrogen bonds per water molecule. Compare this to Figure 6 in the main text, which shows the number of water 
hydrogen bonds with various molecules, reveals that the water near OEG is more bulk-like than the water near OMe: in 
the absence of DNA, water molecules near OEG have 3.3 total hydrogen bonds per water molecule, while water 
molecules near OMe have only 3.1 total hydrogen bonds per water molecule. 
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(6) Water-DNA hydrogen bonds have a higher duration than water-water hydrogen bonds 

 

Figure S7. Hydrogen bond time correlation function, C(t), of water-water and water-DNA hydrogen bonds. The time 
correlation function shows the probability that a hydrogen bond still exists at time t given that it existed at time 0.7 In 
calculating the correlation function, we have allowed for hydrogen bonds to break and subsequently reform rather than 
requiring that they remain continuously intact. This manner of calculation emphasizes the fact that water-DNA hydrogen 
bonds tend to last for longer periods of time, and re-form after temporarily breaking, by showing a long-lasting tail in the 
correlation function.8 Since our interest lies here in the behavior of water molecules near the surface, we only consider 
water molecules within 5 Å of the topmost heavy atoms of the surfaces. Here, we use simulations of an adenine dimer at a 
DNA-surface separation distances of 5 Å to calculate the water-DNA hydrogen bond correlation functions; results for 
cytosine and for tetramers are similar.  

Clearly, water-water hydrogen bonds last for a shorter period of time than water-DNA hydrogen bonds. Over 50% of 
water-water hydrogen bonds break within 2 ps, and only 10% remain after 10 ps. By contrast, approximately two-thirds of 
the water-DNA hydrogen bonds still exist after 2 ps, and more than 10% remain even after 30 ps.  
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repulsive force of the low-density region of water, while ssDNA dimers experience the full effect of this repulsive force 
because they are less capable of base-base stacking (see Figure 7 in the main text).  

(9) Details of surface construction and relaxation 

After constructing the surfaces and minimizing their energies to eliminate unfavorable atomic contacts, we use the 
following protocol to further relax the surfaces into their preferred arrangement. The coordinates of the energy minimized 
surfaces were solvated with TIP3P water molecules to create a 20 Å thick layer on both the +z and –z sides of the surface. 
It is convenient to place water molecules on both sides of the surface when using the LEaP program of the Amber suite, 
and the periodic boundary condition in the z-direction ensures that this is equivalent to having water molecules on only 
one side (top or bottom) of the surface. Then, to further relax the surfaces, we conducted a series of MD simulations. The 
initial size of the periodic box for these simulations was carefully chosen to ensure that the periodic images of the surfaces 
were in close contact, thereby eliminating any gaps in the surfaces and creating an infinite surface when combined with 
periodic boundary conditions in the x- and y-directions, yielding a cross-sectional area of approximately 6.5 nm by 7 nm. 
During these simulations, the bottommost heavy atom of each oligomer was constrained to a constant z-value to prevent 
dissolution of the monolayer while still allowing lateral diffusion and rearrangement in the xy-plane. This constraint on 
the oligomers was applied with the collective variables module of NAMD and a force constant of 2.5 kcal/mol-Å was 
used. First, we conducted constant temperature (300 K), volume, and number of particles (NVT) MD for 100 ps to allow 
the water molecules to equilibrate. Next, we conducted constant temperature, constant pressure (1 atm), and constant 
number of particles (NPT) MD for 100 ps with constant xy-area to allow the pressure to equilibrate while maintaining 
constant grafting density. Finally, we used the coordinates of these relaxed surfaces – with a predetermined grafting 
density and now equilibrated in the presence of liquid water – for the remainder of our simulations. 
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(10) Details of production simulation protocol  

After constructing fully-solvated systems including ssDNA, neutralizing Na+ counterions, the self-assembled monolayer 
(SAM), we used the following procedure to carefully equilibrate the systems prior to use in umbrella sampling 
simulations. First, in constant volume and temperature conditions (NVT ensemble), the water and ions were minimized 
with the conjugate gradient algorithm for 2000 steps, with the DNA and SAM subjected to a 500 kcal/mol-A2 harmonic 
restraining potential. Second, in the NVT ensemble, with the DNA/SAM restraining potential reduced to 100 kcal/mol-A2, 
the system was heated from 0 to 300 K over 20 ps. Third, in constant pressure and temperature conditions (NPT 
ensemble) and with the restraint reduced to 50 kcal/mol-A2 the system was relaxed for another 20 ps. Fourth, in the NVT 
ensemble, the restraining potential was reduced in three steps (50, 10, and 5 kcal/mol-A2) and minimized for 2000 steps 
each. Fifth, in the NVT ensemble with the same 5 kcal/mol-A2 restraint the system was heated from 10 to 300 K over 20 
ps. Sixth, in the NPT ensemble, the restraint was reduced from 5 to 1 to 0.1 to 0 kcal/mol-A2 over 20 ps. Seventh, in the 
NVT ensemble with no restraints, the system was heated from 10 to 300 K over 20 ps. Finally, the system was heated 
from 100 to 300 K over 20 ps in the NPT ensemble at the beginning of each production run. A Langevin thermostat and 
barostat were used to control the temperature (damping coefficient of 1 ps-1) and pressure (piston period of 100 fs and 
piston decay constant of 50 fs) at 300 K and 1 atm. The SHAKE9 algorithm was used to constrain all bonds involving 
hydrogen, and a time step of 2 fs was used. Electrostatic interactions were treated with the particle-mesh Ewald (PME) 
summation method9, with a tolerance of 1e-6 and interpolation order of 4. The non-bonded cutoff was 9.0 Å and the non-
bonded list was updated every 10 steps. Snapshots were recorded every 2 ps. 
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(12) Details of calculations used for analysis 

We assess hydrogen bonding with a geometric criterion involving the three atoms that participate in the hydrogen 
bond (donor, acceptor, and hydrogen): if the distance between the donor and acceptor is less than 3.5 Å and the angle 
formed by the three atoms is greater than 120° (i.e., the angle is within 60° of 180°), they are characterized as forming a 
hydrogen bond (see Figure 3b for diagram). We quantify the hydrogen bonding duration and frequency, the latter of 
which is defined as the percentage of simulation time that a particular type of hydrogen bond is formed. When we 
calculate hydrogen bonds between the DNA and other molecules, we consider all possible hydrogen bonding partners 
(donors and acceptors) on the ssDNA rather than only the Watson-Crick hydrogen bonding partners. , We also normalize 
the frequency to the total number of hydrogen bonding partners on the ssDNA to allow comparisons between different 
DNA bases with different total numbers of hydrogen bonding partners. 

Base-base stacking is quantified by applying a geometric criterion involving the distance between two bases and 
the normal vectors of the planes of the two bases involved. In keeping with standard practice,10 we define the base plane 
by the plane formed between three atoms in each nucleobase: N9, C4, and C1' for purines and N1, C2, and C1' for 
pyrimidines (see Supporting Figure S12 for diagram). If the angle between the normal of two base planes is less than 45° 
and the distance between the centers of mass of the two nucleobases is less than 4.5 Å, we consider the bases stacked. 
These geometric cut-offs are chosen because they yield approximately 90% stacking in B-form double-stranded DNA. We 
introduce another form of analysis, related to base-base stacking, to quantify hydrophobic interactions between the DNA 
and the surface. These “face-on” conformations, where a DNA base is lying parallel against the surface, facilitate 
hydrophobic interactions between the DNA and the surface. If the center of mass of a base is within 4.5 Å in the z-
direction of the center of mass of the topmost heavy atoms in the surface and the base normal is within 45° of the surface 
normal, which we define as the z-axis for simplicity, we consider the base to be interacting “face-on” with the surface (see 
Figure 3d for diagram). The base normal for a face-on conformation is defined in the same way as for base-base stacking. 
As with hydrogen bonds, we quantify the duration and frequency of base-base stacking and face-on conformations, and 
we normalize the frequency (i.e., the percentage of the entire simulation time that an interaction occurs) to the total 
possible number of base-base stacking interactions or face-on conformations.  

We calculate the radius of gyration (Rg) of the ssDNA as: ܴ ൌ ටଵ
ே
∑ ሺݎ െ ைெሻଶேݎ
ୀଵ , where N is the number of 

atoms comprising the ssDNA, rk is the coordinates of atom k, and rCOM is the center-of-mass of the ssDNA. We choose rk 
and rCOM to be three-dimensional (x-, y-, and z-coordinates) for the standard measure of Rg, two-dimensional (x- and y-
coordinates) to calculate the radius of gyration in the xy-plane (Rg,2D), or one-dimensional (z-coordinate only) to calculate 
the radius of gyration in the z-direction (Rg,1D). 

For some calculations, we wish to limit the analysis to only those water molecules that are between the DNA and 
the surface. To accomplish this, we only use water molecules that are within a cylindrical region of space between the 
DNA and the surface (see Figure 5a for a diagram). The radius of the cylinder is given by the two-dimensional radius of 
gyration in the xy-plane (Rg,2D) of the ssDNA, and the cylinder extends vertically (perpendicular to the surface in the z-
direction) from the center of mass of the topmost heavy atoms of the surface upward to the center of mass of the DNA. 

We calculate the axial density distribution function, ρ(z), of all water and ssDNA atoms as a function of distance 
from the surface in the +z-direction: ߩሺݖሻ ൌ ܰሺݖሻ/ ௦ܸ, where N(z) is the number of atoms within 0.5 Å of the z-value 
within, and Vslab is the volume of the rectangular slab at each z-distance (0.5 Å slab height multiplied by the cross-
sectional area of the simulation box). For some calculations, we calculate the density distribution function in the same 
cylindrical region defined in the previous paragraph; for these calculations, we use cylindrical slices of the cylindrical 
region instead of rectangular slabs of the entire simulation box. We report the density as the number density of the atoms 
of interest (i.e., water or DNA atoms).  

The diffusivity, D, of a molecule is calculated using a finite-difference approximation: ܦ ൌ ሺݎ|ۃሺݐଶሻ െ ۄሻ|ଶݐሺݎ െ
ଵሻݐሺݎ|ۃ െ ଶݐሻ/ሺ2݀ሺۄሻ|ଶݐሺݎ െ  ଵሻሻ, where r is the coordinate vector of the molecule in question, which may be 1-, 2-, orݐ
3-dimensional, t is the time, for which the subscripts (0, 1, 2) indicate three consecutive simulation snapshots, and d is the 
dimensionality of r (1, 2, or 3).1 Angular brackets denote averaging over all times. Note that the quantity (t2-t1) is the 
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length of a single simulation snapshot. To calculate the diffusivity of ssDNA, we use the center of mass of the DNA as the 
coordinate r, while for water molecules we use the coordinate of the oxygen atom. To ensure that the lateral diffusion of 
the DNA was not affected by the umbrella sampling bias (i.e., no coupling of diffusion in the z-direction to diffusion in 
the x- and/or y-directions, or, equivalently, a diagonal diffusion tensor) we calculated the off-diagonal components of the 
diffusion tensor (Dxy, Dxz, Dyz). We used the formalism shown in eq. 6 of Raspopovic et al.11 In this formalism, the off-

diagonal components are calculated as ܦ ൌ
ଵ
ଶ
ௗሺۃۃିۄۃۄۄሻ

ௗ௧
ൌ ଵ

ଶ
൫ݒ݅ۃۄ  ۄݒ݆ۃ െ ۄݒۃۄ݅ۃ െ  ,൯, where i and j are the xۄݒۃۄ݆ۃ

y, and z coordinates, vi is the velocity in the i direction, and angular brackets indicate ensemble averaging. This 
calculation assumes that the diffusion tensor is symmetric. We estimated the velocity at each time step t using a central 
difference approximation with time steps t+1 and t–1. We found that all three off-diagonal components are essentially 
zero (data not shown), indicating that there is no coupling between the umbrella sampling bias and lateral diffusion. 

We also calculate the tetrahedral ordering of water. The tetrahedral ordering parameter of water oxygen atom k, 

Qk, is defined by: ܳ ൌ 1 െ ଷ
଼
∑ ∑ ቂܿݏ߶ 

ଵ
ଷ
ቃ
ଶସ

ୀାଵ
ଷ
 , where i and j iterate over the 4 nearest water oxygen atoms to 

water oxygen atom k, and φikj is the angle between atoms i, k, and j.12 For this calculation to function properly, the two 
vectors defining φikj must point from the central atom k to the atoms i and j (i.e., rik = ri – rk, where rk is the Cartesian 
coordinate of the atom k). A value of Qk = 1 indicates perfect tetrahedral ordering, a value of Qk = 0 indicates random 
ordering (e.g. an ideal gas), and values of Qk < 0 are possible. We average the value of Qk over all water oxygen atoms of 
interest and over all simulation times, and we denote this average value simply as Q. Note that we do not include non-
water atoms (e.g., atoms in the surface) in the calculation of Q as is sometimes done.6 

The non-bonded forces and energies between the ssDNA and other components of the system are calculated using 
the pair interaction feature of NAMD.13 We only report the forces in the z-direction because the x- and y-components 
average to zero. 
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(13) Discussion of limitations to our approach 

We have touched on the limitations to our approach in the main text, but we explicitly state and discuss some of 
these limitations here. First, there are the limitations inherent in any simulation approach, such as the approximate nature 
of the force field defining the intra- and intermolecular interactions, including the estimation of atomic partial charges. 
However, our primary interest is in creating idealized hydrophilic and hydrophobic surfaces rather than studying self-
assembled monolayers with specific chemistries, and we have shown that our idealized surfaces produce the intended 
environments by verifying that they produce the expected behaviors of water in hydrophilic and hydrophobic 
environments. Second, care must be taken in making comparisons between our idealized surfaces and experimentally 
studied self-assembled monolayers (SAMs). For instance, most OEG SAMs have somewhat lower coverage than the 
surface we have constructed, and the most effective surface coverage for preventing protein adsorption has been shown to 
be approximately 2/3.4 Therefore, real surfaces with lower coverage may exhibit weaker ssDNA adsorption than we have 
found. Similarly, surfaces with different chemistry, such as a methoxy-terminated OEG instead of our hydroxyl-
terminated OEG, will likely have different properties.14 Bearing these limitations in mind, we have found interesting 
behaviors that could be used to understand more complicated systems and to optimize the adsorption of ssDNA. 
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