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Prediction of polydisperse hard-sphere mixture behavior using tridis-
perse systems

Vitaliy Ogarko,∗a and Stefan Ludinga

1 Details on the Event-driven Molecular Dynamics (EDMD) simulations

In our EDMD simulations we used a modification of the Event-Driven C++ code written by A. Donev et
al.1,2, which is available for download at http://cherrypit.princeton.edu/Packing/C++/.

In our work we consider, in the style of A. Donev3, Molecular Dynamics in a simple bounded simulation
domain embedded in a Euclidean space of dimensionality d, defined by the lattice vectors, λλλ1,..., λλλd . The
simulation domain, or unit cell, is a collection of points with d relative coordinates r in the interval [0,1],
and corresponding Cartesian coordinates

r(E) =
d

∑
k=1

rkλλλk =ΛΛΛr, (1)

where ΛΛΛ is a square invertible matrix representing the lattice, and contains the lattice vectors as columns.
The volume of the unit cell is given by the positive determinant V ≡ |ΛΛΛ|. In particular, we consider a cubic
unit cell in 3D (d=3) with lattice vectors λλλ1 = (1,0,0), λλλ2 = (0,1,0) and λλλ3 = (0,0,1).

Additionally, we use periodic boundary conditions (BCs) which are imposed to mimic an infinite system,
i.e., a statistically homogeneous medium. One can interpret periodic systems as being “infinite” and cover-
ing all Euclidean space with identical copies of the unit cell and the particles in this unit cell, however the
system size λλλk defines the minimum possible wavenumber (largest wavelength). Periodic BCs are handled
by considering the unit cell of the packing and considering each contact between an original i and an image
particle j̃ to be a contact between particles i and j. The vector of d integers ni j specifies how many unit
cells the contact {i, j} crosses over3. This way the relative position between particles i and j is

ri j = ri − r j +ΛΛΛni j, (2)

with the positions ri and r j of the centers of particles i and j, respectively.
Given velocities of the particles just before the contact, v1 and v2, and their masses m1 and m2, the veloc-

ities after the collision are derived4 from conservation of linear momentum and definition of the restitution
coefficient, en, yielding:

v′1 = v1 +∆p/m1, (3)
v′2 = v2 −∆p/m2, (4)

where ∆p is the change of momentum. In the case of smooth (frictionless) particles only the normal com-
ponent of the change of momentum ∆p(n) is affected during the collision (i.e., no angular velocity), and it
is calculated as4:

∆p(n) =−m12(1+ en)v
(n)
c , (5)
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with the reduced mass m12 = m1m2/(m1 +m2), and the normal component of the relative velocity of the
contact-point of the particles v(n)c . The latter is calculated taking into account the expanding sphere surfaces
(for growing particles) as:

v(n)c = n̂
[
(v1 −v2) · n̂− (vgr

1 + vgr
2 )
]
, (6)

with the unit vector in the normal direction n̂ = ri j/
∥∥ri j

∥∥, and the growing speed of radius ai of particle i

vgr
i :=

dai

dt
= Γ

ai

amax
v0, (7)

where amax is the largest particle radius at time t, and v0 :=
√

2E
3M is the thermal velocity, defined via

the total fluctuation kinetic energy, E, and the total system mass, M, and Γ is the dimensionless growth
(compression) rate.

The compressibility factor Z ≡ pV/NkBT , with kinetic temperature kBT = 2E/3N, is calculated from
the total exchanged momentum in all interparticle collisions during a short time period ∆t:

Z = 1− ∑
∥∥∆pi j

∥∥ li j

2E∆t
, (8)

where the bar li j =
∥∥ri j

∥∥ accounts for the distance over which momentum (force) is transmitted. The time
period ∆t is chosen so that the total change in the kinetic energy due to growth stays below 1%.

To account for stability of the code (numerical errors), we allow particles to have a very small overlap,
given by the following expression:∥∥ri j

∥∥2 − (ai +a j)
2 ≥−10−12(ai +a j). (9)

This way the code does not break down near jamming, even for very high compressibility factor Z ≈ 1012.

2 Size distribution parameters

In order to facilitate the process of finding a maximally equivalent tridisperse system, we consider, in
the style of Bartlett5, the tridisperse distribution detailed in Table 1. This distribution has been chosen
so that varying the number fractions n1,2, and the non-dimensional radii weighed by number fractions,
δi = niai/⟨a⟩, i = 1,2, allows the mixture composition and volume fraction to change, while the total
number density ρ = N/V and mean radius ⟨a⟩ are fixed. Note that any tridisperse mixture can be expressed
in this form, since this distribution has six degrees of freedom as desired (i.e., 2s for s = 3 species): ρ, ⟨a⟩,
δ1,2 and n1,2. This is equivalent to the set ν, ⟨a⟩,

⟨
a2⟩,..., ⟨a5⟩, as used in the paper, and these two sets are

related as: ⟨
ak
⟩
=

3

∑
i=1

niak
i = ⟨a⟩k

(
δk

1

nk−1
1

+
δk

2

nk−1
2

+
(1−δ1 −δ2)

k

(1−n1 −n2)k−1

)
, k ≥ 1, (10)

ν = ρ
4π
3
⟨
a3⟩ . (11)

Consider polydisperse systems with a uniform size distribution of radii (e.g., same number of bigger
spheres as smaller spheres in intervals da), characterized by its extreme size ratio ω = amax/amin, i.e., the
ratio between the maximum and the minimum particle radius. The radius of the particles in such systems is
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Table 1 Specification of a tridisperse mixture of hard spheres with fixed values for the total number density of particles, ρ, and mean radius
⟨a⟩. The properties of the mixture are then uniquely defined by the variables δi = niai/⟨a⟩ and ni = Ni/N.

Species 1 Species 2 Species 3
Number density ρi ρn1 ρn2 ρ(1−n1 −n2)

Radius ai ⟨a⟩ δ1

n1
⟨a⟩ δ2

n2
⟨a⟩ (1−δ1 −δ2)

(1−n1 −n2)

distributed uniformly between amin = (1−ω0)⟨a⟩ and amax = (1+ω0)⟨a⟩, where ω0 = (ω− 1)/(ω+ 1),
and 2ω0 ⟨a⟩= amax −amin is the width of the (normalized) size distribution function f (a):

f (a) =
1

2ω0 ⟨a⟩
Θ(amax −a)Θ(a−amin), (12)

with the Heaviside step function Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 elsewhere. For the uniform size distri-
bution, due to its simplicity, maximally equivalent systems can be found analytically. We do it by solving a
system of four equations that matches the first four central scaled moments with the tridisperse system from
Table 1. Central scaled moments are very simple for the uniform size distribution:

Mc
2 = (1/3)ω2

0,

Mc
3 = 0,

Mc
4 = (1/5)ω4

0,

Mc
5 = 0,

(13)

with Mc
1 = 0, due to the definition:

Mc
k =

⟨
(a−⟨a⟩)k⟩

⟨a⟩k . (14)

Therefore, maximally equivalent tridisperse systems to the uniform size distribution (with parameter ω) can
be obtained analytically (e.g., using Mathematica software):

n1 =
5

18
, n2 =

8
18

, (15)

δ1(ω) =
1

18
(5+

√
15ω0), δ2 =

8
18

. (16)

Note that here and further we pick a only (unique) solution (for a given ω) with a1 ≥ a2 ≥ a3 (sorted radii).
Furthermore, equivalent systems (with matched k = 2,3,5 scaled moments) to a system with uniform size
distribution with ω = 3, considered in the paper in Figure 1(b), are detailed below for different kurtosis
β2 = Mc

4/(M
c
2)

2:

n1 =
1

2β2
, n2 =

β2 −1
β2

, (17)

δ1 =
6+
√

3β2

12β2
, δ2 =

β2 −1
β2

. (18)

Consider systems with uniform volume distribution of radii in the sense that the total volume occupied
with those particles with radii between a1 and a1 + da is equal to the total volume occupied by particles
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with radii between a2 and a2 + da, etc. These systems can be also characterized by their extreme size
ratio ω = amax/amin. This is a truncated power law size distribution, which due to its sharp edges with
well defined ω, could be obtained by ideal sieving from wider, smooth continuously distributed realistic
distributions. Power law distributions appear in a diverse range of natural and man-made phenomena6. The
radius of the particles in such systems is distributed between amin = ω+1

2ω ⟨a⟩ and amax = ω+1
2 ⟨a⟩ and the

(normalized) size distribution function f (a) is expressed as:

f (a) =
⟨a⟩2

2ω0
a−3Θ(amax −a)Θ(a−amin). (19)

Tridisperse maximally equivalent systems to polydisperse ones with uniform volume radii distribution, as
considered in the paper in Figure 2, are detailed in Table 2. First four raw scaled moments Mk =

⟨
ak⟩/⟨a⟩k

for the uniform volume radii distribution are:

M2 =
lnω
2ω0

,

M3 =
(1+ω)2

4ω
,

M4 =
(1+ω)4

16ω2 ,

M5 =
(1+ω)4(1+ω+ω2)

48ω3 .

(20)

To avoid possible confusion, we note that in the distribution detailed in Eq. (19), what is actually uni-
formly distributed is the inverse area z = a−2:

f (z)dz = f (a)da, dz =−2a−3da, (21)

therefore, f (z) = f (a)/(−2a−3) = const for a−2
max ≤ z ≤ a−2

min. Accordingly, a proper nomenclature for this
type of size distribution is uniform inverse area distribution (per inverse-area interval). However, we stick
to the uniform volume size distribution in the sense defined above Eq. (19), in order to talk about size
distributions only.

Table 2 Specification of tridisperse mixtures of hard spheres maximally equivalent to polydisperse systems with uniform volume distribution
of radii for various extreme size ratios ω.

ω n1 n2 δ1 δ2

2 0.1427 0.4054 0.1988 0.4337

3 0.08923 0.3544 0.1593 0.4181

4 0.06189 0.3118 0.1345 0.4034

5 0.04582 0.2777 0.1173 0.3902

6 0.03548 0.2502 0.1044 0.3785

8 0.02331 0.2086 0.08630 0.3584

10 0.01661 0.1789 0.07400 0.3419
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Figure 1 (top left) A polydisperse system with uniform size radii distribution with ω = 10 and N = 4096 particles and (top right) its
maximally equivalent tridisperse counterpart, and (bottom left) a polydisperse system with uniform volume radii distribution with ω = 10 and
N = 8192 particles and (bottom right) its maximally equivalent tridisperse counterpart. Color is by relative size, where darker grey particles
are bigger – in color blue.

Log-normal distributions appear in studies of emulsions, granular materials, such as sediments7 and
particle growth processes8. Therefore, we also study this size distribution of sphere radii, which has the
form7:

f (a) =
1

σ
√

2πa
exp

{
− [ln(a/a0)]

2

2σ2

}
, (22)
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Figure 2 Jamming density plotted against σ for systems with log-normal (LN) radii distribution and for their tridisperse maximal equivalents
(TLN), using N = 16384. In the inset, the behavior of the fitting equations beyond the range of data is shown for larger values of σ, using the
same axis and symbols. The deviation between LN and TLN data is due to the rattler-removed packings have highly different moments and
thus being not true maximally equivalent anymore.

where a0 is a reference radius setting the length scale:

a0 = (1/2)(D32D43)
1/2(D32/D43)

3, (23)

and σ is the dimensionless geometric standard deviation:

σ =

√
ln
(

D43

D32

)
, (24)

with (often experimentally accessible) the volume-weighted mean diameter D43 and the surface-weighted
mean diameter D32 defined in terms of the moments via:

D43 ≡ 2
⟨
a4⟩/⟨a3⟩ , (25)

D32 ≡ 2
⟨
a3⟩/⟨a2⟩ . (26)

The log-normal moments
⟨
ak⟩ are given by⟨

ak
⟩
= ak

0 exp(k2σ2/2). (27)

Eq. (24) can often be used to estimate σ for a real log-normal distribution of particle radii, using experi-
mental sizing data, for example from light-scattering7. Note that while uniform size and uniform volume
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radii distributions are having sharp edges at amin and amax, the log-normal distribution is smoothly increas-
ing and decreasing. Tridisperse maximally equivalent systems to polydisperse ones with log-normal radii
distribution, considered in this report in Fig. 2, are detailed in Table 3. Note that the number fraction n1 of
large species decreases very fast with increasing σ. This means that to have in the system, e.g., more than
10 large particles for σ = 1, one has to use large total numbers of particles N ≥ 106 (no data shown), which
is computationally expensive.

Table 3 Specification of tridisperse mixtures of hard spheres maximally equivalent to polydisperse systems with log-normal distribution of
radii for various σ.

σ n1 n2 δ1 δ2

0.05 0.1330 0.6620 0.1457 0.6653

0.1 0.1040 0.6480 0.1263 0.6611

0.15 0.07972 0.6255 0.1083 0.6543

0.2 0.05980 0.5952 0.09197 0.6448

0.25 0.04384 0.5585 0.07722 0.6329

0.3 0.03138 0.5167 0.06405 0.6186

0.35 0.02190 0.4713 0.05245 0.6021

0.4 0.01488 0.4238 0.04236 0.5836

0.45 0.009833 0.3758 0.03371 0.5634

0.5 0.006306 0.3285 0.02639 0.5416

0.55 0.003918 0.2832 0.02032 0.5186

0.6 0.002355 0.2407 0.01535 0.4945

0.65 0.001367 0.2017 0.01137 0.4695

0.7 0.0007643 0.1666 0.008247 0.4440

0.75 0.0004110 0.1357 0.005847 0.4180

0.8 0.0002121 0.1090 0.004046 0.3920

0.85 0.0001048 0.08627 0.002729 0.3659

0.9 0.00004951 0.06731 0.001792 0.3401

0.95 0.00002231 0.05177 0.001143 0.3147

1.0 0.000009572 0.03923 0.0007078 0.2899

Figure 2 shows the maximum density νmax as a function of σ for systems with log-normal radii dis-
tribution and for their tridisperse maximal equivalents (with rattlers). A relatively fast compression rate,
Γ = 16×10−3 was used to achieve these configurations, i.e., a monodisperse system (with σ = 0) does not
crystallize and reaches a random close packing. From our data, the jamming density νmax can be fitted by a
function of σ:

νmax(σ) = ν∞
max − (ν∞

max −ϕRCP)exp(−2σ2), (28)

7

Electronic Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2013



where the random close packing density ϕRCP = νmax(0) is 0.6373 (taken from data) and the maximum
density, ν∞

max = 0.7990, in the limit of σ → ∞. Note that Eq. (28) has a similar form as previously reported
equations for the jamming density for the uniform size and uniform volume radii distributions9, i.e.,

νmax(x) = ν∞
max − (ν∞

max −ϕRCP)F(x). (29)

Based on this observation, we speculate that this is a general form for the jamming density of some large
class of polydisperse radii distributions, where a function F(x) can be expressed in terms of moments of
the size distribution. Particularly, for the log-normal radii distribution F(x) can be expressed as (this is an
arbitrary choice out of many):

Fln(σ)≡ exp(−2σ2) =

(
D32

D43

)2

. (30)

The deviation of Eq. (28) is within ±0.7% for all data 0 ≤ σ ≤ 1.
Nevertheless, we found that the jamming density for the log-normal radii distribution can also be fitted

by another function, which is very close to Eq. (28) in the range 0 ≤ σ ≤ 1, but differs for larger σ:

νmax(σ) = ν∞
max + c1 exp(−σ2)+ c2 exp(−σ3), (31)

with ν∞
max = 0.8583, c1 =−0.3516 and c2 = 0.1332. The deviation of Eq. (31) is within ±0.4% for all data

0 ≤ σ ≤ 1.
In Figure 1 we show final snapshots (near jamming) of polydisperse systems and their maximally equiv-

alent tridisperse ones, which are considered in the paper in Figure 2.

3 Measuring bond-orientational order

In order to distinguish particles that are part of the crystal from those that belong to fluid or glass we
utilize a method which is independent of the specific crystal structure and does not require the definition
of the reference frame (i.e., rotationally invariant), provided by the following algorithm based on spherical
harmonics10–12. The idea is to calculate for each particle i a set of complex numbers

q̄lm(i) =
1

Nb(i)

Nb(i)

∑
j=1

Ylm(r̂i j), (32)

where Ylm are spherical harmonics with components m ranging from −l ≤ m ≤ l, evaluated for the normal-
ized direction vector r̂i j connecting the centers of mass of particles i and j. The components of q̄lm(i) depend
on the relative orientation of particle i with respect to its Nb(i) neighboring particles13. For determining
neighboring particles we utilize a weighted Delaunay tessellation14 (otherwise called regular triangulation),
effectively taking in account radii of particles. These triangulations provide information about inter-particle
distances among a set of spheres. The CGAL external library was used for the construction of the triangu-
lation. In order to account for periodic boundaries, we periodically repeat the simulation box in all three
directions. We use l = 6 because it allows to detect hcp clusters and clusters with cubic symmetry (fcc, bcc,
and sc) but also clusters with icosahedral symmetry, which can have nonzero spherical harmonics only for
l = 6,10,12, ...10. To this end, we construct a normalized complex vector q6(i), with components q̃6m(i)
proportional to the q̄6m(i).
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In a second step a dot product of the vectors q6 of neighboring particles i and j is computed:

d6(i, j) = q6(i) ·q6( j)≡
6

∑
m=−6

q̃6m(i)q̃6m( j)∗, (33)

where the * indicates complex conjugation. Here, d6(i, j) is a normalized quantity correlating the local
environments of neighboring particles13; it is a real number and is defined in the range −1≤ d6(i, j)≤ 1. By
construction, d6(i, i) = 1. For example13, in a perfect face-centered-cubic crystal, all the particles have the
same environment and, therefore, the dot product between the vectors associated with any pair of particles
is unity. The dot product decreases when thermal vibrations are present but, on average, it is close to unity
if particles have a solid-like environment and around zero if particles have a liquid-like environment.

Now particles i and j are considered to be “connected” if q6(i) ·q6( j) exceeds a certain threshold, in our
case 0.65. A particle is labeled as solid-like if it has at least six connections. Finally, we define the degree
of crystallinity pc, or simply crystallinity, of a sample as the number of solid-like particles divided by the
total number N.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

p c

ω

US
TUS
BUS

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 1  1.2  1.4  1.6  1.8  2

Figure 3 (Color online) Crystallinity plotted against ω for systems with uniform size distribution (US), for their maximally equivalent
tridisperse systems (TUS), and for equivalent bidisperse systems (BUS) previously considered 9. In the inset we zoom into the low ω behavior
using the same axis and symbols.

Figure 3 shows the crystallinity pc as function of size ratio ω for systems with uniform size distribution
characterized by its extreme size ratio ω and for their maximally equivalent tridisperse systems (see Sec.2
for details) as well as for equivalent bidisperse systems considered in previous study9. Crystallinity data
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show that maximally equivalent tridisperse systems do not show any signs of crystallization for ω ≥ 1.4,
while equivalent bidisperse systems partially crystallize for ω > 5.

4 Structure factor and spectral density

Recently S. Torquato and colleagues15 have studied the small wavenumber k behavior of the structure factor
S(k) of over-compressed amorphous hard sphere configurations for a wide range of densities up to the max-
imally random jammed state. They have found that a precursor to the glassy jammed state was evident long
before the jamming density was reached as measured by a growing nonequilibrium length scale extracted
from the volume integral of the direct correlation function. Their results are extended to different sys-
tems and to mixtures16. While the structure factor S(k) measures local-number-density fluctuations, local-
volume-fraction fluctuations provide the appropriate structural description of non-monodisperse packings
because they account correctly for the size distribution of the particles. The analog of the structure factor
in this context is the so-called spectral density, ξ(k). We investigate if the polydisperse and the respective
maximally equivalent tridisperse S(k) and ξ(k) are equivalent too.

Both structure factor and spectral density are numerically obtained using discrete Fourier transforms17

according to

S(k) =

∣∣∣∑N
j=1 exp(−ik · r j)

∣∣∣2
N

(k ̸= 0), and (34)

ξ(k) =

∣∣∣∑N
j=1 exp(−ik · r j)m̂(k;R j)

∣∣∣2
V

(k ̸= 0), (35)

where
m̂(k;R j)≡

∫
Rd

exp(−ik · r)Θ(R−∥r∥)dr, (36)

is the Fourier transform of the indicator function for a d-dimensional sphere of radius R. Note that the shape
of the domain, defined by a set of lattice vectors {λλλi}, restricts the wave vectors such that k ·λλλi = 2πn for
all i, where n ∈ Z. To obtain spherically symmetric forms of the structure factor and spectral density, we
angularly average over all wave vectors within a spherical shell of thickness 2π/∥λλλi∥ in reciprocal space.
The wave number k is the magnitude of the wave vector k, i.e., k = ∥k∥.

Figures 4, 5, 6, 7 show the structure factor S(k) and the spectral density ξ(k) for several polydisperse
systems with uniform size and uniform volume radii-distributions, and for their maximally equivalent tridis-
perse systems (with rattlers). (D = 2⟨a⟩ is an effective length scale, taken here to be the average diameter.)
An exhaustive study of these quantities is well beyond the scope of the present study. Nevertheless, we ob-
serve that for low ω ≤ 3 the polydisperse and the respective maximally equivalent tridisperse S(k) and ξ(k)
are in good agreement for all k-values. With increasing ω the agreement gets worse for high k-values, but
still the low k behavior is similar, especially in the case of the uniform size distribution. This observation
confirms that maximally equivalent systems are indeed very similar in their microstructure.
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Figure 4 Structure factor as function of the scaled wavenumber for systems with uniform size distribution (circles) and for respective
maximally equivalent tridisperse systems (crosses) for different ω given in the insets.
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Figure 5 Spectral density as function of the scaled wavenumber for systems with uniform size distribution (circles) and for respective
maximally equivalent tridisperse systems (crosses) for different ω given in the insets.
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Figure 6 Structure factor as function of the scaled wavenumber for systems with uniform volume distribution (circles) and for respective
maximally equivalent tridisperse systems (crosses) for different ω given in the insets.
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Figure 7 Spectral density as function of the scaled wavenumber for systems with uniform volume distribution (circles) and for respective
maximally equivalent tridisperse systems (crosses) for different ω given in the insets.
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