
1 Supplementary information

The equations and assumptions used to derive the hinge torque
model are presented below. Representative values for physical
constants are listed in Table 1. These values are for a hinge
with a 22 mil thick SMP layer, a six millimeter wide resistive
circuit, and supplied with two amps of current.

Variable value unit
Hinge Length L 30 mm
Trace width wtrc 6 mm
Bond thickness tbond 127 µm
Resistance Ro 0.59 Ω

conductivity k 0.2 W/mK
diffusivity α 7.97 ·10−8 m2/s
transfer coefficient hsmp 30.8 W/m2K
Bending Stiffness Ib 0.037 Nm/rad
SMP Thickness tsmp 560 µm
Surface Coefficient Cs 0.92
Young’s Modulus E 400 kPa
Specific energy qgen 8.7 kW/m2

Transition temperature Tg 95 ◦C
Ambient temperature To 25 ◦C

Table 1 Known and calculated values used in the thermal and
mechanical models of a test hinge with a 22 mil PO layer, six
millimeter wide trace, and supplied with two amps of current

1.1 Convection

Convection is the SMP heat transfer coefficient hsmp multi-
plied by the difference between surface temperature and am-
bient temperature. It can be expressed by the following:

hsmp =
Nukair

Lc
(1)

In this case, the Nusselt number Nu = 3.11, the thermal
conduction of air kair = 0.026W/mK 2, and the characteristic
length Lc depends on the trace geometry.

Lc =
Lwtrc

2(L+wtrc)
(2)

1.2 Y-axis and vertical heat transfer

The geometry of the hinge is effectively constant in the y-
direction, so we also assume that the hinge is isothermal in
that direction. In the z-direction (vertical), the Biot number
Bi = hsmptsmp/ksmp is much smaller than one for all hinges
tested, indicating that conduction through the SMP will occur
more quickly than convection. Because of this, we can ignore
the transient effects of vertical conduction, and assume that the

vertical heat flux through the SMP Qcond is equal to the heat
flux due to convection Qconv from the SMP surface.

Qconv = Qcond (3)

hsmpTsur f ace =

(
T −Tsur f ace

)
k

tsmp
(4)

Tsur f ace =CsT =
k

k+hsmptsmp
T (5)

In this way we can solve for the ratio Cs of the surface SMP
temperature Ts to the inner SMP temperature T . For all of our
experimental hinges, Cs > 0.9. Therefore, for the sake of sim-
plification, we assume the material is isothermal in the y- and z-
directions, and can be treated as a one-dimensional system. We
still use Cs when comparing our model to experimental thermal
data, because the SMP temperature is measured at the surface
using thermal imaging.

1.3 Horizontal heat transfer

Using the similarity solution for the transient, semi-infinite heat
transfer problem2, we find that

T −T (0, t)
To−T (0, t)

= erf
(

x
2
√

αt

)
(6)

−k
∂T
∂x

∣∣∣∣
x=0

= qgen−
Qconv

A
(7)

= qgen−h′ (T (0, t)−To) (8)

T (x, t)−To

qgen/h′
=

[
erfc

(
x

2
√

αt

)
− (9)

exp
(

h′x
k

+
h′2αt

k2

)
erfc

(
x

2
√

αt
+

h′
√

αt
k

)]
(10)

The specific power generated qgen is considered to be the total
power released by the resistive circuit Qgen over the total area
through which it is diffusing. We treat the core as a box out of
which heat conducts uniformly.

A = 2(tsmp +wtrc)L (11)

qgen =
Qgen

A
(12)

Qgen is a function of the resistance of the circuit and the cur-
rent running through it. The resistance is itself affected by the
temperature; from observation, we conclude that the temper-
ature difference in degrees Celsius is approximately equal to
the power dissipated by the circuit per unit length in watts per
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meter. This relationship is modeled below

Qgen = I2Ro(1+∆Testαcu) (13)
≈ ∆TestL (14)

≈ I2RoL
L−αI2Ro

(15)

h′ is the lumped heat transfer coefficient including convec-
tion from both the core (at x = 0) and the margin. First, we
must find the relationship between h′, governing heat transfer
across A, to the convective heat transfer coefficient of the SMP
hsmp occurring at the surface of area As.

∆T = (T (0, t)−To) (16)
Qconv = hsmpAs∆T = h′A∆T (17)

As accounts for both the core and marginal area undergoing
convection. The marginal convection is a function of the
marginal temperature and the effective distance over which
convection is occurring. We approximate the temperature as
linearly decreasing away from the core; therefore, the average
marginal temperature is assumed to be half of the core tem-
perature, and the distance is approximated from the similarity
solution.

Qcore−conv = hsmp∆T Lwtrc (18)

Qmargin−conv = hsmp
∆T
2

Lwmargin (19)

wmargin ≈ 2
√

αt (20)
Qconv = Qcore−conv +Qmargin−conv (21)

As =
Qconv

hsmp∆T
= L

(
wtrc +

√
αt
)

(22)

h′ =
hsmpwtrc

2(tsmp +wtrc)

(
1+
√

αt
wtrc

)
(23)

In addition to finding the core temperature, these equations
are used to find the distance from the core in which the SMP
has been activated. The first order Taylor approximation of T
is found about x = 0, and is rewritten as follows:

xa =

[
1−

Tgh′(k+h′tsmp)

qgenk
− exp

(
h′2αt

k2

)
erfc

(
h′
√

αt
k

)]

·

 k

h′exp
(

h′2αt
k2

)
erfc

(
h′
√

αt
k

)
 (24)

1.4 Torque

The steady state torque is determined by integrating the stress
σ along the midplane.

τs =
∫ tsmp+tbond

tbond

σxL dx (25)

=

(
t2
smp +2tbondtsmp

)
σL

2
(26)

Assuming plane strain, we replace:

σ =
Eε

1−ν2 (27)

=


0 T (0, t)< Tg−15

4E
3

(
T (0,t)−Tg+15

30

)
Tg−15 < T (0, t)< Tg +15

4E
3 T (0, t)> Tg +15

(28)

where the Poisson’s ratio ν = 0.5.
The increase in torque due to deformation is considered to

be a separate model that assumes the SMP layer to be a one-
dimensional element of length wact , under tension equal to σ

times the cross sectional area, fixed to each face. The deformed
face is at an angle φ with the ground close to the hinge (Fig.
3 C). τd is proportional to the force from the tension element
perpendicular to the face Fperp and the distance from the hinge
on which the force is acting r.

τd =Fperpr (29)

In this model, the tension element forms a triangle with both
faces of the fold extending a length r from the hinge. The angle
between each face and the tension element is φ/2. We assume
φ is small, in order to simplify the trigonometry.

wact/2 =rcos(φ/2) (30)
r ≈wact/2 (31)

Fperp =Ftensionsin
(

φ

2

)
≈ (Ltsmpσ)

φ

2
(32)

τd ≈(Ltsmp)σ
wactφ

4
(33)

We then model the deformed face as a bending beam, and as-
sume that τ = Ibφ , where Ib is the bending stiffness.

τ =τs + τd (34)

≈
2ELIb

(
t2
smp +2tbondtsmp

)
3Ib−ELtsmpwact

(35)

1.5 Critical current

From simulations, it is apparent that after some amount of time
the growth of the core temperature begins to slow. In order
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to develop guidelines for picking an appropriate current, we
invent a critical time point t∗ indicating when the tempera-
ture growth slows. Because erfc dominates the equation, and
erfc(χ) approaches zero at χ ≈ 1, we choose this as our crit-
ical point, and attempt to find a recommended current Ir that
achieves T (0, t∗) = Tg at this point.

χ =
h′
√

αt
k

= 1 (36)

T (0, t)−To =
qgen

h′
[1− exp(χ)erfc(χ)] (37)

= 0.57
qgen

h′
(38)

By using eq. 23, and assuming tsmp << wtrc, we can approxi-
mate

h′ ≈
hsmp

2

(
1+

k
wtrch′

)
(39)

≈
hsmp

2

(
1+

k
wtrchsmp

)
(40)

qgen ≈
I2R
2Lw

(41)

T (0, t)−To ≈
0.57I2R

L(hsmpw+ k)
(42)

Ir =

√
(Tg−To)(hsmpw+ k)L

0.57R
(43)
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