Supplementary Information

Formation and Properties of Wormlike Micelles in Cationic

Surfactant Solutions with a 2-Hydroxypropoxy Insertion Group

Xi-Lian Wei,^{*} A-Li Ping, Pan-Pan Du, Jie Liu, De-Zhi Sun,^{*} Qing-Fu Zhang, Hong-Guo Hao,Hui-Jun Yu

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China

	<i>T</i> ∕/ ⁰C	cmc mmol·L ⁻¹	γ _{cmc} mN·m ⁻¹	$\Gamma_{\rm m} \times 10^{10}$ mol·cm ⁻²	Kroff Point °C
R ₁₆ HTAB	25	0.525	33.5	3.93	19.0
	30	0.417	33.0	3.83	
	35	0.385	32.8	3.83	
	50	0.263	32.5	3.79	
СТАВ	25	0.92	37.8	3.10	22.0
	30	0.94	36.8	2.92	
	35	1.13	37.0	2.81	
	50	1.50	37.6	2.74	

1. Surface active parameters of R₁₆HTAB and CTAB in aqueous solution at different temperature

2. ¹H NMR spectral data and elemental analysis dates of R₁₆HTAX ¹HNMR:

R₁₆HTAX: ¹H NMR: δ 0.86 (3 H, t, *CH*₃ aliphatic chain); 1.22 (26 H, m, *CH*₂ aliphatic chain); 1.51 (2 H, m, *CH*₂ aliphatic chain); 3.41 (4 H, t, 2 O-*CH*₂); 3.48 (9 H, s, 3 *CH*₃); 3.53 (1 H, m, N-CH₂-*CH*); 3.61 (2 H, d, N-*CH*₂); 4.52 (1 H, br s, *OH*). **Elemental analysis**: Calc. (%) for C₂₂H₄₈NO₂Br: C, 60.26; H, 11.03; N, 3.19. Found (%): C, 60.17; H, 10.97; N, 3.29.

3. Zero-shear apparent viscosity of the surfactant system as a function of R_{16} HTAB concentration at 30.0 °C

^{*} Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, Shandong 252059, P. R. China

E-mail: weixilian@126.com; Fax: +86-635-8239196; Tel: +86-635-8230613 sundezhi@lcu.edu.cn Fax: +86-635-8239196; Tel: +86-635-8230614

4. The Storage modulus (closed symbol) and loss modulus (open symbol) as a function of angular frequency (a) and the corresponding Cole–Cole plots (b) for solutions at different R_{16} HTAB concentrations which are illustrated in the figures at 30.0 °C.

5. Curves of apparent viscosity (η) versus shear rate (ý) for aqueous solutions of R₁₆HTAB at different concentrations of NaSal. R₁₆HTAB concentration: (a) 20.0 mmol·L⁻¹; (b) 40.0 mmol·L⁻¹

6. ¹H NMR spectra for R_{16} HTAB/NaSal systems; K denotes molar ratio of counterion to surfactant. The bottom spectrum is R_{16} HTAB and the second bottom one is NaSal in D₂O. Then from down to up, 20, 30, 40 and 60 mmol·kg⁻¹NaSal was added into 40 mmol·kg⁻¹ R_{16} HTAB solutions

7. Variations of G' (filled symbols) and G'' (open symbols) with the shear frequency ω for aqueous solutions of R₁₆HTAB (40 mmol·kg⁻¹) (a, b) and the corresponding Cole–Cole plots (c, d), the solid lines represent the best fit to the Maxwell model at 298K. The NaSal concentrations are expressed in the Figures.

8. Curves of apparent viscosity (η) versus shear rate (ý) at different temperatures and at a fixed R₁₆HTAB/NaSal molar rate of 20/40 mmol·kg⁻¹

