Supporting information

Membrane elastic energy

We assume that the membrane elastic energy is minimized at zero curvature. The membrane elastic energy is then expressed by

$$
\begin{align*}
& E_{\text {bound }}=\kappa_{\text {bound }} H_{\text {bound }}^{2} A_{\text {bound }} \tag{4}\\
& E_{\text {swell }}=\kappa_{\text {swell }} H_{\text {swell }}{ }^{2} A_{\text {swell }} \tag{5}
\end{align*}
$$

where κ_{i} and A_{i} denote the bending rigidity and area, respectively, of a state i, and H_{i} represents the mean curvature of the membrane of the state i. We also assume energy storage around the hole, which is expressed by
$E_{h}=\frac{\lambda\left(H_{\text {bound }}+H_{\text {bound, } \max }\right)}{2 \pi\left(r_{p}-r_{\text {swell }}\right)}$
The volume of the buffer solution contained in a vesicle is approximately expressed as

$$
\begin{equation*}
V_{\text {swell }}=\pi r_{\text {swell }}^{2} \times 2 \pi r_{p}=2 \pi^{2}\left(\frac{1}{2 H_{\text {swell }}}\right)^{2} r_{p} \tag{a1}
\end{equation*}
$$

Parameters $r_{\text {swell }}$ and r_{p} are shown in Figure 7 a. Thus, $E_{\text {swell }}$ may be rewritten as
$E_{\text {swell }}=\kappa_{\text {swell }} \frac{\pi^{2} r_{p}}{2 V_{\text {swell }}} A_{\text {swell }} \quad$ (a2)
$H_{\text {bound }}$ and r_{p} are dependent on each other by a geometric constraint:
$r_{p}=\left(\frac{A_{\text {bound }}}{\pi}\right)^{1 / 2}\left(1-\frac{A_{\text {bound }}}{4 \pi} H_{\text {bound }}^{2}\right)^{1 / 2}$

Here we use

$$
\sin \theta=\frac{r_{p}}{r_{\text {bound }}}, \quad A_{\text {bound }}=2 \pi r_{\text {bound }}^{2}(1-\cos \theta)
$$

The first equation is an approximation. Using eq. a3, $E_{\text {swell }}$ and E_{h} are expressed by
$E_{\text {swell }}=\kappa_{\text {swell }} \frac{\pi^{3 / 2}}{2} \frac{A_{\text {swell }} A_{\text {bound }}^{1 / 2}}{V_{\text {swell }}}\left(1-\frac{A_{\text {bound }}}{4 \pi} H_{\text {bound }}{ }^{2}\right)^{1 / 2}$

$$
\begin{equation*}
E_{h}^{-1}=2 \pi\left(\lambda\left(H_{\text {bound }}+H_{\text {boundmax }}\right)\right)^{-1} r_{p}\left\{1-\left(\frac{V_{\text {swell }}}{2 \pi^{2}}\right)^{1 / 2}\left(\frac{A_{\text {bound }}}{\pi}\right)^{-3 / 4}\left(1-H_{\text {bound }}^{*}\right)^{-3 / 4}\right\} \tag{a5}
\end{equation*}
$$

Here we introduce

$$
\begin{equation*}
H_{\text {bound }}^{*} \quad{ }^{2}=\frac{A_{\text {bound }} H_{\text {bound }}^{2}}{4 \pi}, \quad p_{A}{ }^{*}=\frac{A_{\text {swell }} A_{\text {bound }}^{1 / 2}}{V_{\text {swell }}} \tag{a6}
\end{equation*}
$$

to obtain

$$
\begin{align*}
E^{*}= & \frac{E_{\text {bound }}+E_{\text {swell }}+E_{h}}{2 \pi \kappa_{\text {swwell }}} \\
= & \left.2 \kappa^{*} H_{\text {bound }}^{*}+\frac{\sqrt{\pi}}{4} p_{A}^{*}\left(1-H_{\text {bound }}^{*}\right)^{2}\right)^{1 / 2} \tag{a7}\\
& +\frac{\lambda^{*}}{2 \pi} \frac{\left(H_{\text {bound max }}^{*}+H_{\text {bound }}^{*}\right)}{\left(1-H_{\text {bound }}^{*}\right)^{2 / 2}} \frac{1}{\left.1-\frac{1}{\pi^{1 / 4}} \frac{1}{\left(2 r_{A}^{*} p_{A}^{*}\right)^{1 / 2}}\left(1-H_{\text {bound }}^{*}\right)^{2}\right)^{-3 / 4}}
\end{align*}
$$

where $E^{*}=\left(E_{\mathrm{bound}}+E_{\text {swell }}+E_{\mathrm{h}}\right) /\left(2 \pi \kappa_{\text {swell }}\right)$, and dimensionless bending rigidity is defined as $\kappa^{*}=\kappa_{\text {bound }} /$ $\kappa_{\text {swell }}$.
$V_{\text {swell }}$ given by eq. a1 and is conserved. Eqs. a1 and a3 yield

$$
\begin{equation*}
r_{\text {swell }}=\frac{1}{2 H_{\text {swell }}}=\frac{V_{\text {swell }}^{1 / 2}}{\sqrt{2} \pi}\left(\frac{A_{\text {bound }}}{\pi}\right)^{-1 / 4}\left(1-\frac{A_{\text {bound }}}{4 \pi} H_{\text {bound }}^{2}\right)^{-1 / 4} \tag{a8}
\end{equation*}
$$

Using eqs. a3 and a8, we obtain

$$
\begin{equation*}
A_{\text {swell }}=2 \pi r_{\text {swell }} 2 \pi r_{p}=2 \sqrt{2} \pi V_{\text {swell }}^{1 / 2}\left(\frac{A_{\text {bound }}}{\pi}\right)^{1 / 4}\left(1-\frac{A_{\text {bound }}}{4 \pi} H_{\text {bound }}^{2}\right)^{1 / 4} \tag{a9}
\end{equation*}
$$

Eqs. a6 and a9 give

$$
\left.p_{A}^{*}=8 \sqrt{\pi^{3}} r_{A}^{*}\left(1-H_{\text {bound }}^{*}\right)^{2}\right)^{1 / 2} \quad(a 10)
$$

where $r_{\mathrm{A}}{ }^{*}$ is defined as $A_{\text {bound }} / A_{\text {swell }}$.
The substitution of eq. a10 for $p_{A}{ }^{*}$ in eq. a7 gives

$$
\begin{equation*}
E^{*}=2 \kappa^{*} H_{\text {bound }}^{*} \quad{ }^{2}+2 \pi^{2} r_{A}^{*}\left(1-H_{\text {bound }}^{*}{ }^{2}\right)+\frac{\lambda^{*}}{2 \pi} \frac{H_{\text {bound,max }}^{*}+H_{\text {bound }}^{*}}{\left(1-H_{\text {bound }}^{*}\right)^{2}} \frac{1}{1-\frac{1}{4 \pi r_{A}^{*}} \frac{1}{1-H_{\text {bound }}^{*}{ }^{2}}} \tag{a11}
\end{equation*}
$$

which generates eq. 7 in the main text.
The total area of the membrane $\left(A_{\text {total }}\right)$ is conserved. The equation $A_{\text {total }}=A_{\text {swell }}+2 A_{\text {bound }}$, eq. a9 and $r_{\mathrm{A}}{ }^{*}=A_{\text {bound }} / A_{\text {swell }}$ yield eqs. 9 c and 9 d in the main text. Here we used $\alpha_{\text {swell }}{ }^{*}=1-2 \alpha_{\text {bound }}{ }^{*}$, that is derived from $A_{\text {swel l }}=A_{\text {total }}-2 A_{\text {bound }}$.

