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ANALYSIS - DESIGN PRINCIPLES

From tilings of the 2D Euclidean plane to porous
structures

To identify possible periodic monodisperse circular
hole arrangements in elastic plates where buckling can
be exploited as a mechanism to reversibly switch between
undeformed/expanded and deformed/compact configur-
ations, we investigate the hole arrangements by consider-
ing geometric constraints on the tilings (i.e., tessellations)
of the 2D Euclidean plane.

In order for all the monodisperse circular holes to close
through buckling of the ligaments, the plates should meet
the following requirements: (a) the center-to-center dis-
tances of adjacent holes are identical, so that all the lig-
aments are characterized by the same minimum width
and undergo the first buckling mode in an approxim-
ately uniform manner; (b) there is an even number of
ligaments around every hole, so that the deformation
induced by buckling leads to their closure. Mathemat-
ically, these geometric constraints can be rephrased as:
the skeleton of the porous structure should (a’) be a con-
vex uniform tiling of the 2D Euclidean plane (which are
vertex-transitive and have only regular faces) (b’) with an
even number of faces meeting at each vertex. Focusing on
1-uniform tilings (i.e. Archimedean tilings) where all the
vertices are the same, so that all the holes deform simil-
arly, we find that there are only four tessellations which
meet the above requirements: square tiling, triangular
tiling, trihexagonal tiling and rhombitrihexagonal tiling
(see Fig. S1-A). The corresponding porous structures are
then obtained by placing a circular hole at each vertex
of the four tilings (see Fig. S1-B). Finally, we note that
each periodic porous structure has an underlying kin-
ematic model which comprises of a network of rigid poly-
gons and hinges (see Fig. S1-C). These kinematic models
can be obtained by transforming the circular holes either
to (i) squares, if they are surrounded by four thin liga-
ments (as in the cases of 4.4.4.4, 3.6.3.6, 3.4.6.4); or (ii)
hexagons, if they are surrounded by six thin ligaments
(as in the cases of 3.3.3.3.3.3).

Figure S1: From tilings to porous structures. (A) We start
with a solid sheet of material and draw a tiling pattern on
the sheet. (B) The corresponding porous structure is then
obtained by placing a circular hole at each vertex of the tiling.
(C) The corresponding kinematic model can be obtained by
transforming the circular holes either to squares or hexagons.

The kinematic models can then be used to study
the deformation mechanism of the corresponding porous
structures. Fig. S2 shows the folding mechanism of the
four kinematic models investigated in this study.
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Figure S2: Folding mechanism of the kinematic models. (A)
completely unfolded configuration; (B),(C) and (D) interme-
diate configurations; (E) completely compact/folded config-
uration. The polygons are colored differently only for visual-
ization purposes.

DISLOCATION DIPOLE MODEL

It has been recently shown that the patterns induced
by buckling in periodic porous structures can be invest-
igated by making use of continuum elasticity theory and
approximating the deformed holes as elastic dipoles [1].
The stress fields due to elastic dipoles are long ranged and
dipoles interact with each other with interaction energy
[1]

Uint = −E
π
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[
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1

4

]
,

(S1)
where E is the 2-dimensional Young’s modulus of bulk
elastic medium, R is distance between two dipoles, d1
and d2 are magnitudes of dipole vectors, and θ1 and θ2
are dipole orientations (Fig. S3A). We note that indi-
vidual elastic dipoles also feel the effect of the external
uniaxial compression [1], but this contribution is neg-
lected in this study. Assuming periodic boundary condi-
tions and independent orientations of dipoles inside the
primitive cell (Fig. S6), we minimized the interaction en-
ergy of elastic dipoles (S1). For each dipole, we included
interactions with ∼ 100 nearest dipole neighbors. The
patterns that correspond to the minimized interaction
energy of elastic dipoles in the four arrangements invest-
igated in this study are shown in Fig. S3. The patterns
closely resemble the patterns obtained with FE analysis
(see Fig. 1-C).

Figure S3: (A) Diagram of the interaction between two elastic
dipoles (d1 and d2) separated by R. (B) Patterns that cor-
respond to the minimum free energy of interactions between
elastic dipoles for the four structures considered in this study.

EXPERIMENTS

Material

Silicone rubber (Vinylpolysiloxane: Elite Double 32,
Zhermack) was used to cast the experimental specimens.
The material properties were measured through tensile
testing, up to a nominal strain ε = 0.82. No hyster-
esis and rate dependence was found during loading and
unloading. The stress-strain behavior was found to be
accurately captured by a Yeoh hyperelastic model [2],
whose strain energy density is

WYeoh =

3∑
i=1

[
Ci0

(
Ī1 − 3

)i
+ (J − 1)

2i
/Di

]
(S2)

where Ī1 = tr
[
dev

(
FTF

)]
, J = det [F], and F is the

deformation gradient. Note that two of the parameters
entering in Yeoh model are related to the conventional
shear modulus (G0) and bulk modulus (K0) at zero strain
as C10 = G0/2 and D1 = 2/K0. To capture the behavior
of the silicone rubber used in the experiments we used
C10 = 154 kPa, C20 = 0 kPa, C30 = 3.5 kPa, and
D1 = D2 = D3 = 38.2 GPa−1.
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Specimens fabrication

The molds to cast the specimens were fabricated us-
ing a 3-D printer (Connex 500, Objet Ltd.) having
a resolution of 600 dpi and a claimed printing accur-
acy of 30 µm. A very thin layer of mold release oil
(Ease Release 200, Smooth-on Inc.) was sprayed onto
the mold prior to molding. Then, the silicone rub-
ber was cast into the mold. The casted mixture was
first allowed to set in a vacuum for 10 minutes and
then was placed at room temperature until curing was
completed. The overall sizes of the four specimens are
W (width) × H(height) × T (thickness) = 80.0 × 80.0 ×
35.0mm, 86.6×75.0×35.0mm, 93.3×97.0 mm×35.0 mm
and 132.0× 137.1 mm× 55.0 mm for 4.4.4.4, 3.3.3.3.3.3,
3.6.3.6, 3.4.6.4, respectively. Note that large out-of-plane
thicknesses were employed for all the specimens in order
to avoid out-of-plane buckling modes during the uniaxial
compression tests. The four samples were designed to
have a void-volume-fraction ψ = 0.50 and holes with ra-
dius r = 4.0 mm. This resulted in a center-to-center
distance between adjacent holes of a = 10.8 mm for the
3.3.3.3.3.3 pattern, a = 9.3 mm for the 3.6.3.6 pattern,
and a = 9.7 mm for the 3.4.6.4 pattern. Note that the
fabricated samples were found to have a slightly lower
void-volume-fraction (i.e. ψ4.4.4.4 = 0.49, ψ3.3.3.3.3.3 =
0.48, ψ3.6.3.6 = 0.49, ψ3.4.6.4 = 0.49), due to the lim-
ited accuracy of the 3D printer. This deviation has been
accounted for in the simulations.

Testing

Uniaxial compressive experiments were performed on a
standard quasi-static loading frame (Instron 5566) with
a 10 kN load cell (Instron 2710-106) in a displacement-
controlled manner. The specimens were compressed
within flat compression fixtures. Note that the specimen
was not clamped to the fixtures, but friction between the
specimen and fixture surface was enough to hold the po-
sition of the specimens’ top and bottom faces because no
lubricant was used on the horizontal surfaces. The com-
pression tests were performed at the cross-head velocity
of 20 mm/min until the holes were almost closed. During
the test, a Nikon D90 SLR camera facing the specimen
was used to take pictures at every nominal strain incre-
ment of ∆ε = 0.006. The specimens were marked with
black dots, so that we were able to quantify the changes
in the geometry of the structures induced by deformation
with a post-processing code in MATLAB.

Calculation of εxx, εyy, ν and , νinc from experiments

To quantify the lateral contraction (and thus the neg-
ative Poisson’s ratio) of the porous structures in exper-

iments, we investigated the evolution of the microstruc-
ture. The physical samples were marked with black dots
as shown in Fig. 2 in the main text and their position was
recorded using a high-resolution digital camera and then
analyzed by digital image processing (MATLAB). All the
black markers were identified in the initial frame (Fig. S4-
A), and followed through the loading process. We only
focused on the central part of the samples where the re-
sponse was clearly more uniform and marginally affected
by the boundary conditions. We first constructed several
parallelograms connecting the markers in the central part
of the sample (Fig. S4-B) and monitored their evolution
as a function of the applied deformation. All the markers
and their corresponding parallelograms which were used
in the calculations, are highlighted in green in Fig. S4-C.
For each parallelogram, local values of the engineering
strain εxx and εyy were calculated from the positions of
its vertices at each recorded frame t as

εxx(t) =
(x4(t)− x3(t)) + (x2(t)− x1(t))

2 | L0
34 |

− 1, (S3)

εyy(t) =
(y1(t)− y3(t)) + (y2(t)− y4(t))

2 | L0
13 | cos θ

− 1, (S4)

where (xi, yi) denote the coordinates of the i-th vertex
of the parallelogram, | L0

34 | and | L0
13 | are the norm of

the lattice vectors spanning the parallelogram in the un-
deformed configuration (see Fig. 4-A in the main text)

and θ = arccos
L0

34·L
0
13

|L0
34||L0

13|
. The local values of the engin-

eering strain were then used to calculate local values of
the Poisson’s ratio as

ν(t) = − εxx(t)

εyy(t)
, (S5)

and

νinc(t) = − εxx(t+ ∆t)− εxx(t)

εyy(t+ ∆t)− εyy(t)
. (S6)

Note that ν characterizes the lateral contrac-
tion/expansion of the structure with respect to the
initial/undeformed configuration. Differently, νinc
quantifies the lateral contraction/expansion with respect
to the deformed configuration induced by an increment
in the applied strain ∆ε and allow us to describe the
Poisson’s ratio of a material that operates around a
pre-deformed state. Finally, the ensemble averages
εxx =< εxx >, εyy =< εyy >, ν =< ν > and ,
νinc =< νinc > for the central parallelograms under
consideration were computed.
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Figure S4: Illustration of calculation of εxx, εyy, ν and νinc
from experiments. (A) The samples were marked with black
dots. These markers were identified with a tracking number
in the initial frame and followed through the loading process.
(B) Parallelograms connecting four markers in the central
part of the sample were constructed and their evolution was
monitored as a function of the applied deformation. (C)All
the parallelograms used in the calculations are highlighted in
green.

FINITE-ELEMENT SIMULATIONS

Load-displacement analysis

The commercial finite element (FE) code
ABAQUS/Standard was used for simulating the
post-buckling response of the finite-size porous struc-
tures. Assuming plane strain conditions, 2D FE models
were constructed using ABAQUS element type CPE6MH
with a mesh sweeping seed size of 0.5 mm.

After determining the pattern transformation (the low-
est eigenmode) from a buckling analysis, an imperfection
in the form of the most critical eigenmode was introduced
into the mesh, scaled so that its magnitude was two or-
ders of magnitude smaller than the hole size.

As the experiments were performed under
displacement-controlled conditions, load-displacement
analysis were then performed imposing vertical displace-
ments at the top surface of the FE model, while fixing
the horizontal degrees of freedom. All the degrees of
freedom of the bottom surface were fixed.

Instability Analysis for Infinitely Periodic Solids

Our results demonstrate that buckling in elastic plates
with carefully designed arrangement of holes may be ex-
ploited to induce either the formation of chiral patterns
and/or negative Poisson’s ratio. However, so far we only
focused on the response of structures with ψ ' 0.5, and
did not explore the effect of the void-volume-fraction
ψ, which can be used to control the critical strain
at buckling. Since our results clearly show that the
FE simulations were able to accurately reproduce the
experimental results, we investigated numerically the
effect of ψ on the instability of the structured plates.
For the sake of computation efficiency, we focused
on infinite periodic structures, and performed all the
analysis on a single unit cell using appropriate boundary
conditions [3, 4]. It is well known that along the loading
path periodic structures can suddenly change their
periodicity due to either microscopic instability (i.e.,
instability with wavelengths that are of the order of the
size of the microstructure) or macroscopic instability
(i.e, instability with much larger wavelengths than the
size of the microstructure) [3, 4]. In the following we
provide a detailed description of the numerical analysis
performed to detect both microscopic and macroscopic
instabilities.

Infinite periodic structures In this section, we con-
sider infinite planar periodic solids under plane strain
conditions (Fig. S5-A). The periodic solid is character-
ized by a unit cell spanned by the lattice vectors A1 and
A2 in the undeformed configuration (Fig. S5-B) and any
spatial function V (X) must satisfy the periodic condition

V (X + R) = V (X) (S7)

where with R = p1A1 + p2A2, p1 and p2 being integers.
For later use, we also introduce the reciprocal lattice vec-
tors (Fig. S5-C)

B1 = 2π
A2 ×A3

||A1 ×A2||
, B2 = 2π

A3 ×A1

||A1 ×A2||
(S8)

where A3 = (A1 ×A2) /||A1 × A2||, so that
Ai · Bj = 2πδij , δij being the Kronecker delta.
Thus, the reciprocal lattice vector G can be expressed
by G = q1B1 + q2B2, q1 and q2 being integers. Figure
S5-C illustrates the reciprocal unit spanned by the
primitive reciprocal lattice vectors B1 and B2.

Incremental formulation The deformation of the unit
cell is described by the deformation gradient

F =
∂x

∂x0
, (S9)

mapping a point in the material from the reference posi-
tion x0 to its current location x. The material is assumed

Electronic Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2013



5

Figure S5: (A) Schematic of infinite periodic structure in two
dimensional space. (B) Primitive unit spanned by the prim-
itive lattice vectors A1 and A2. Basis vectors are denoted by
e1 and e2. (C) The corresponding reciprocal unit spanned
by the primitive reciprocal lattice vectors B1 and B2. Basis
vectors ẽi are defined by ẽi = 2π

||A1×A2||
ei for i = 1, 2.

to be non-linear elastic, characterized by a stored-energy
function W = W (F), which is defined in the reference
configuration. The first Piola-Kirchhoff stress S is thus
related to the deformation gradient F by

S =
∂W

∂F
. (S10)

In the absence of body forces, the equation of motions in
the reference configuration can be written as

DivS = ρ0
D2x

Dt2
, (S11)

where Div represents the divergence operator in the un-
deformed/reference configuration, D/Dt is the material
time derivative and ρ0 denotes the reference mass density.

To investigate the stability of the periodic solid, incre-
mental deformations superimposed upon a given state of
finite deformation are considered. Denoting with Ṡ the
increment of the first Piola-Kirchhoff stress, the incre-
mental forms of the governing equations is given by

Div Ṡ = ρ0
D2ẋ

Dt2
, (S12)

where ẋ denotes the incremental displacements. Fur-
thermore, linearization of the constitutive equation (S10)
yields

Ṡ = L : Ḟ, with Lijkl =
∂2W

∂Fij∂Fkl
, (S13)

where Ḟ denotes the incremental deformation gradi-
ent, and L denotes incremental modulus (i.e. elasticity
tensor).

To detect microscopic instabilities, we investigate the
propagation of small-amplitude elastic waves defined by

ẋ(X, t) = ˙̃x(X) exp(−iωt) , (S14)

where ω is the angular frequency of the propagating wave,
and ˙̃x denotes the magnitude of the incremental displace-
ment. It follows from (S13) that

Ṡ(X, t) =
˙̃
S(X) exp(−iωt) , (S15)

so that equations (S12) become

Div
˙̃
S = ρ0 ω

2 ˙̃x , (S16)

which represent the frequency-domain wave equations.
Microscopic instabilities Although microscopic

(local) buckling modes may alter the initial periodicity
of the solid, they can be still detected by studying
the response of a single unit cell and investigating the
propagation of small-amplitude waves with arbitrary
wave vector K̂ superimposed on the current state of
deformation [5, 6]. While a real angular frequency
ω corresponds to a propagating wave, a complex ω
identifies a perturbation exponentially growing with
time. Therefore, the transition between a stable and an
unstable configuration is detected when the frequency
vanishes (i.e. ω = 0) and the new periodicity of the solid
introduced by instability can be easily obtained by the
corresponding wave vector.

To detect the onset of microscopic instabilities, we first
deform the primitive unit cell to a certain extent and then
investigate the propagation of elastic waves with different
wave vector

K̂ = K̂1B1 + K̂2B2, (S17)

K̂1 and K̂2 being two real numbers. For each wave vector
K̂, the angular frequency ω is determined by solving the
frequency domain equation (S16). In this analysis quasi-
periodic boundary conditions are applied, so that

˙̃x(X + R̂) = ˙̃x(X) exp(iK̂ · R̂), (S18)

R̂ denoting the distance in the current configuration
between each pair of nodes periodically located on the
boundary. Since most commercial finite-element pack-
ages do not support the complex-valued displacements
introduced by (S18), following Aberg and Gudmundson
[7] we split any complex-valued spatial function φ(X) into
a real and an imaginary part,

φ(X) = φ(X)re + iφ(X)im. (S19)

The problem is then solved using two identical finite-
element meshes for the unit cell, one for the real part
and the other for the imaginary part, coupled by

˙̃x
re

(X + R̂) = ˙̃x
re

(X) cos(K̂ · R̂)− ˙̃x
im

(X) sin(K̂ · R̂),
(S20)

˙̃x
im

(X + R̂) = ˙̃x
re

(X) sin(K̂ · R̂) + ˙̃x
im

(X) cos(K̂ · R̂).
(S21)

A microscopic instability is detected at the first point
along the loading path for which a wave vector K̂cr =
K̂1,crB1 + K̂2,crB2 exist such that the corresponding an-
gular frequency ω is zero. The instability will result in
an enlarged unit cell with n1 × n2 primitive unit cells,
where

n1 =
1

Ǩ1,cr

, and n2 =
1

Ǩ2,cr

. (S22)
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Macroscopic instabilities Following Geymonat et al.
[5], we investigate macroscopic instabilities by detecting
loss of strong ellipticity of the overall response of the
periodic structure. Specifically, macroscopic instabilities
may develop whenever the condition

(m⊗M) :
[
LH : (m⊗M)

]
> 0 ,

for all m⊗M 6= 0
(S23)

is first violated along the loading path, LH denoting the
homogenized incremental modulus.

In this study, 2D FE simulations on the primitive
cell (see Fig. S6) are performed to detect macroscopic
instabilities applying periodic boundary conditions (S7).
Operationally, after determining the principal solution,
the components of LH are identified by subjecting the
unit cells to four independent linear perturbations of
the macroscopic deformation gradient [6]. Then loss of
ellipticity is examined by checking condition (S23) at
every π/360 radian increment.

Results Here, FE simulations are performed to com-
pute both microscopic and macroscopic instabilities un-
der uniaxial compression for structures characterized by a
wide range of void-volume-fractions, ψ ∈ (0.4, 0.6). Note
that higher levels of porosity would lead to structures
characterized by very thin ligaments, making them fra-
gile. On the other hand, for smaller values of porosity
the response of the structures would be highly affected
by the material nonlinearity.

Figure S6: Nominal strain ε at the onset of microscopic and
macroscopic instabilities as a function of the void-volume-
fraction ψ. The results confirm that microscopic buckling
is always critical with for the considered range of ψ.

The results of the instability analyses are summarized
in Fig. S6, where the critical strain for both macroscopic
and microscopic instability is reported as a function of ψ.
As expected, the critical nominal strains at instability de-
crease for increasing values of ψ due to the reduction of
the structural stiffness regardless of the types of instabil-
ity. Interestingly, within the considered range of void-
volume-fraction for all configurations the critical nominal
strains for microscopic instability is found to be always
smaller than that for macroscopic instability. Thus, these
results indicate that for all configurations the folded pat-
terns induced by microscopic buckling will emerge for a
wide range of void-volume-fraction.
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