Phase diagram of hard board like colloids from computer simulations

S. D. Peroukidis, A. G. Vanakaras

Department of Materials Science, University of Patras, Patras 26504, GREECE

Supplementary Information FILE

S1. Phase diagram of hard spheroplatelets with pairs (w^*, l^*) in which simulations have been performed

Fig. S1. The phase diagram of hard spheroplatelets (see main manuscript for details). The black squares on the diagram indicate the molecular geometries (w^*, l^*) for which the actual simulations were performed.

S2. Representative Equations of State (EOS)

We present characteristic pressure (p^*) versus packing fraction (η) equations of state for various (w^*, l^*) pairs. More specifically, for the following enantiotropic phase sequences: (a) $I - N_- - Col_x$, (b) $I - N_- - SmA$ (c) I - SmA, and (d) $I - N_b - SmA$ (see Fig. S2).

Fig. S2. Equations of state for systems consisting of SP particles (a) $(w^*, l^*) = (11, 12)$, (b) $(w^*, l^*) = (4, 12)$, (c) $(w^*, l^*) = (3, 9)$ and (d) $(w^*, l^*) = (\sqrt{11}, 11)$. The solid symbols correspond to EOS calculated from compression runs from well equilibrated low-density isotropic states and the open symbols are EOS obtained by expansion from close packed states. The density jump accompanying the N-I phase transition is rather small in comparison with the corresponding jump along the N-Sm and I-Sm phase transitions.

S3. Cubatic phase for two representative (w^*, l^*) molecular geometries.

Fig. S3. Equations of state (pressure vs packing fraction) and representative snapshots of cubatic phases for systems consisting of SP particles with (a) $(w^*, l^*) = (3, 6)$ and (b) $(w^*, l^*) = (5, 5)$. The solid and open symbols correspond to compression and expansion runs respectively. The snapshot in (a) corresponds to $p^* = 11.54$ and indicates the formation of well defined stacks of particles forming short biaxial columns or Smectic-like clusters, while in (b) the particles form short uniaxial columns. In both cases the nematic-like orientational correlations diminish after a few molecular lengths.

Note that the relative stability of the cubatic phases with respect to SmA and/or the Columnar phase is still an open issue. For a detailed discussion see refs[1-3].

REFERENCES

[1] M. Marechal, A. Patti, M. Dennison, and M. Dijkstra. Frustration of the Isotropic-Columnar Phase Transition of Colloidal Hard Platelets by a Transient Cubatic Phase *Phys. Rev. Lett.*, 2012, 108, 206101.

[2] M. R. Wilson, P. D. Duncan, M. Dennison and A. J. Masters. Molecular dynamics simulation studies of platelets with square cross-sectional area: formation of a stable cubatic phase. *Soft Matter*, 2012, 8, 3348-3356.

[3] P. D. Duncan, A. J. Masters, and M. R. Wilson. Thermodynamic stability of the cubatic phase of hard cut spheres evaluated by expanded ensemble simulations. *Phys. Rev.* E 2011, **84**, 011702.