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1. Axisymmetric droplets 

In this section, we present computations of the equilibrium of axisymmetric droplets wetting 

solid surfaces textured with concentric rings. The mathematical formulation of the augmented 

YL equation, governing the surface shape of axisymmetric droplets, is presented below. 

The droplet surface is conveniently defined in spherical coordinates (r, θ). When axial 

symmetry is considered around the y-axis, the problem is one-dimensional. The 

parameterization of the spherical coordinates (r, θ) is performed in terms of the arc-length, s, 

of the intersection of the droplet surface with the xy-plane (see Fig. SI 1), (i.e., r ≡ r (s), θ ≡ θ 

(s)). 

The local mean curvature of the droplet surface reads: 
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The unknown functions, r(s) and θ(s), are determined by solving the augmented Young-

Laplace equation (eq. (1)) and the dimensionless arc-length differential equation: 

Electronic Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2013

http://www.chemeng.ntua.gr/people/pathan


(
  

  
)
 
   (

  

  
)
 
  .                 (SI-2) 

Due to the incompressibility of the liquid, the volume remains constant at any drop 

deformation: 

∫       
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The characteristic length is RRoR, the radius of a sphere the volume of which is equal to the 

droplet volume. 

 

Fig. SI 1 Axisymmetric liquid droplet on a ring-patterned surface. 

The maximum arc-length, sRmaxR, of the droplet surface is unknown and is computed by 

accounting for the following algebraic equation: 

    at       .                            (SI-4) 

Moreover, the following boundary conditions are accounted for: 
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The Neumann-type boundary conditions (eq. (SI-5)) impose the axial symmetry around the y-

axis and the Dirichlet-type boundary condition singles out the arc-length equation solution 

(eq. (SI-2)). 
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1.1. Single-pillar structured surface 

We first test the validity of the augmented YL equation by comparing its predictions with 

results obtained from the conventional YL equation for an axisymmetric droplet wetting a 

single-pillar structured solid surface; the pillar intersection with the vertical xy-plane is given 

by eq. (16). 

The bifurcation diagram in Fig. SI 2 depicts the dependence of the dimensionless droplet 

height on the material wettability (θRYR).  

 

Fig. SI 2 Dependence of the droplet height on the material wettability (θRΥR) for a single-pillared solid 

surface structure (eq. (16) with pR1R = 0.6, pR2R = 10, pR3R = 5). 

It is observed that both the augmented and the conventional YL equations produce nearly 

identical results. Furthermore the transition between the upper and the lower stable branch is 

hysteretic, similar with the case of a cylindrical droplet wetting a single-striped surface (see 

Fig. 6).  

The augmented YL equation can also be applied for the computation of axisymmetric 

droplets wetting solid surfaces decorated with concentric rings. 

1.2. Concentric rings-patterned surface 

The proposed methodology is applied to a spherical droplet wetting the axisymmetric 

patterned solid surface depicted in Fig. SI 1. The intersection of this solid surface with the 

vertical xy-plane is given by eq. (17). 

Electronic Supplementary Material (ESI) for Soft Matter
This journal is © The Royal Society of Chemistry 2013



 

Fig. SI 3 Dependence of the droplet height on the material wettability (θRΥR) for a concentric rings-

patterned solid surface (eq. (17) with pR4R = 8, pR5R = 2). 

The dependence of the apparent contact angle, θRaR, as a function of the material wettability, 

θRYR, is depicted in Fig. SI 3. One can observe that the solution space of the axisymmetric 

droplet is similar to the one of a cylindrical droplet, sitting on a patterned solid surface.  

2. Arbitrary shaped corrugations 

The augmented YL equation can be trivially extended to any kind of corrugations. In this 

section, we present a computed equilibrium solution of a cylindrical droplet wetting a solid 

surface which is decorated with mushroom shaped stripes (see Fig SI 4). 
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Fig. SI 4 Equilibrium solution of a cylindrical droplet wetting a mushroom-like striped surface. The 

material wettability corresponds to θRYR = 102 P

o
P. The inset shows a magnified view of the cross-section 

of each mushroom-shaped stripe. 

Mushroom-shaped structures are commonly used in solid surfaces that demonstrate increased 

robustness of the Cassie type wetting states P

1
P. A correlation of their geometric structural 

properties with the apparent wetting behavior can be systematically studied using the 

proposed augmented YL methodology. 

3. Eikonal equation 

The disjoining pressure, pP

LS
P, is a function of the Euclidean distance from the solid boundary. 

For structured surfaces (see Fig. SI 5), this distance is computed solving the Eikonal 

equation, which reads: 

|  (   )|         ,                              (SI-7) 
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where Φ denotes the two-dimensional computational domain and ∂S is the solid surface 

boundary. 
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Fig. SI 5 Contour lines of constant distance, δ, from the solid boundary obtained from the Eikonal 

equation solution. The topography of the solid surface is given by eq. (18). 

The equation is solved with the vanishing viscosity method P

2
P. The distance, δ, of a point 

located at the droplet surface from the solid boundary is interpolated from the solution of the 

Eikonal equation. Thus, the Eikonal equation is solved only once for a particular solid surface 

geometry.  
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