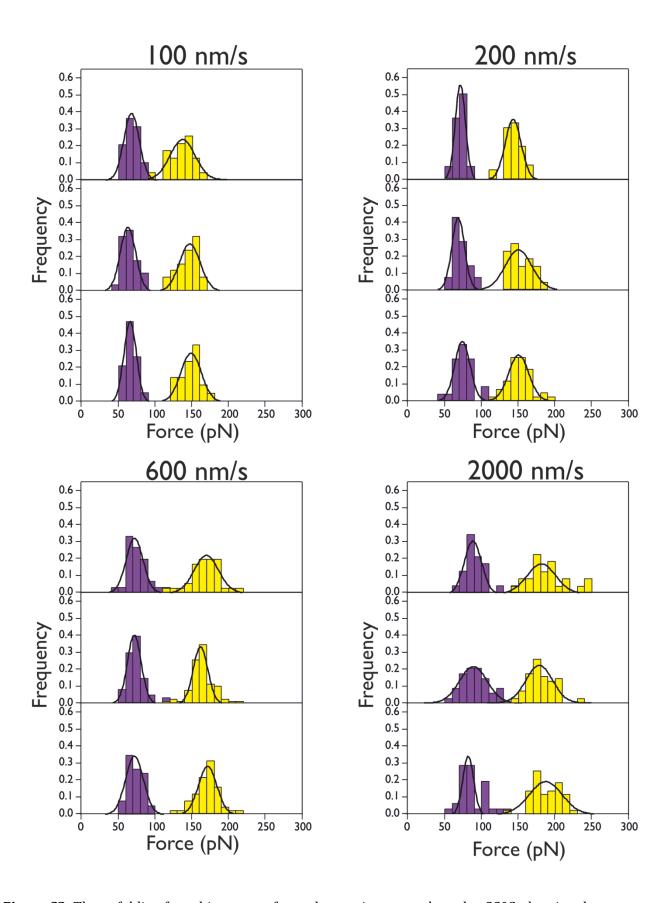
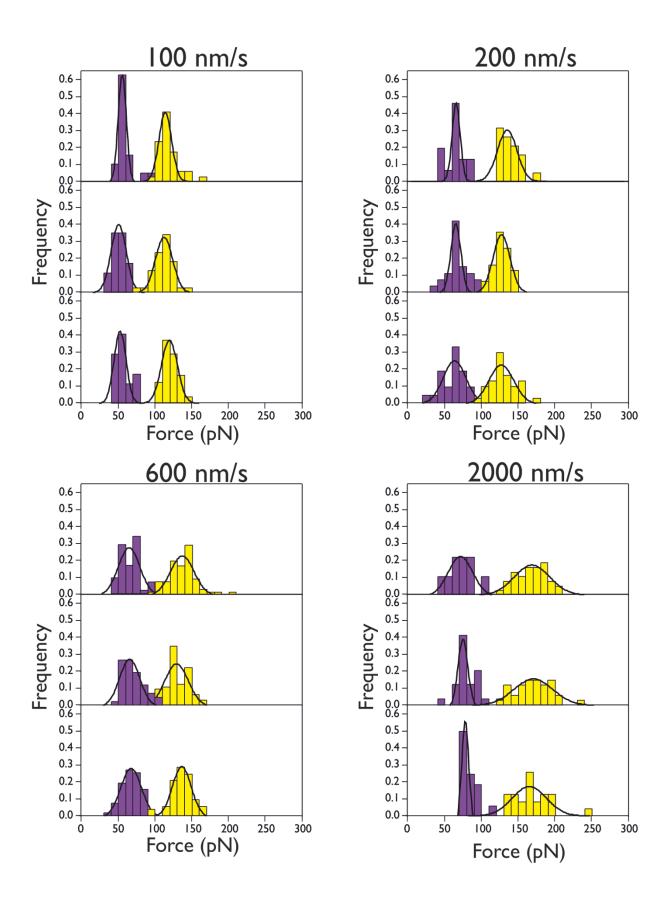

SUPPLEMENTARY INFORMATION


Single Molecule Force Spectroscopy Reveals the Temperaturedependent Robustness and Malleability of a Hyperthermophilic Protein

Katarzyna M. Tych^{a,b}, Toni Hoffmann^{a,b}, David J. Brockwell^b and Lorna Dougan^{a,b*}


^a School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom.
^b Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.

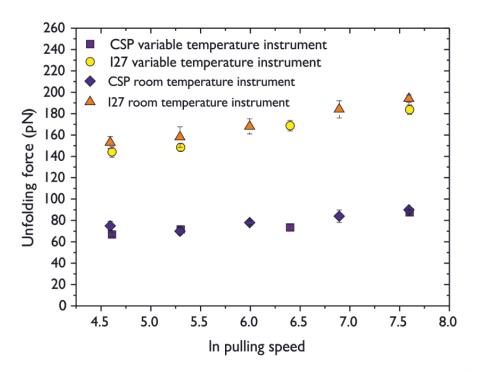

Figure S1: The unfolding force histograms for each experiment conducted at 5°C, showing the histograms for CSP events in purple and those for I27 in yellow, grouped by pulling velocity. Gaussian fits to the data provide a measure of the force distribution widths.

Figure S2: The unfolding force histograms for each experiment conducted at 23°C, showing the histograms for CSP events in purple and those for I27 in yellow, grouped by pulling velocity. Gaussian fits to the data provide a measure of the force distribution widths.

Figure S3: The unfolding force histograms for each experiment conducted at 40°C, showing the histograms for CSP events in purple and those for I27 in yellow, grouped by pulling velocity. Gaussian fits to the data provide a measure of the force distribution widths.

Figure S4: Comparison of the pulling speed dependence of the unfolding forces of I27 and CSP on the variable temperature instrument at 23°C used in this work and the room temperature instrument used to characterise the same sample under the same conditions, as previously reported in Journal of Physical Chemistry, B., 2013, **117**, 1819-1826.

Speed [nms ⁻¹]	# Csp	# I27	Median unfolding force CSP [pN] (±SD)	Average [pN] (±SD)	Median unfolding force I27 [pN] (±SD)	Average [pN] (±SD)
100	15 11 21	15 19 26	85 (± 16) 74 (± 10) 80 (± 12)	80 (± 5)	172 (± 19) 179 (± 17) 177 (± 13)	176 (± 3)
200	27 12 12	31 16 17	88 (± 13) 87 (± 14) 80 (± 11)	86 (± 4)	182 (± 17) 186 (± 20) 184 (± 22)	183 (± 3)
600	10 13 67	37 20 90	85 (± 10) 95 (± 17) 93 (± 20)	91 (± 6)	218 (± 29) 212 (± 29) 218 (± 28)	216 (± 4)
2000	30 19 20	32 20 18	114 (± 19) 102 (± 19) 107 (± 26)	107 (± 6)	243 (± 29) 253 (± 23) 247 (± 28)	248 (± 5)

Table S1. Summary of mechanical unfolding data for (I27-Csp)₃-I27 at 5°C

Speed [nms ⁻¹]	# Csp	# I27	Median unfolding force CSP [pN] (±SD)	Average [pN] (±SD)	Median unfolding force I27 [pN] (±SD)	Average [pN] (±SD)
100	19 28 19	52 25 21	68 (± 8) 66 (± 11) 66 (± 7)	67 (± 2)	139 (± 17) 147 (± 13) 147 (± 13)	144 (± 5)
200	14 14 24	36 22 43	72 (± 7) 70 (± 9) 73 (± 12)	72 (± 2)	144 (± 11) 151 (± 14) 151 (± 16)	149 (± 4)
600	31 61 37	35 78 51	77 (± 15) 72 (± 12) 72 (± 10)	73 (± 3)	170 (± 21) 163 (± 15) 173 (± 16)	169 (± 5)
2000	23 34 31	48 69 43	88 (± 16) 90 (± 17) 85 (± 17)	88 (± 3)	184 (± 26) 179 (± 18) 188 (± 17)	184 (± 4)

Table S2. Summary of mechanical unfolding data for (I27-Csp)₃-I27 at 23°C

Speed [nms ⁻¹]	# Csp	# I27	Median unfolding force CSP [pN] (±SD)	Average [pN] (±SD)	Median unfolding force I27 [pN] (±SD)	Average [pN] (±SD)
100	19 17 17	34 38 24	53 (± 13) 54 (± 9) 54 (± 13)	54 (± 1)	114 (± 14) 111 (± 13) 120 (± 10)	115 (± 5)
200	15 26 20	19 31 30	64 (± 12) 66 (± 11) 64 (± 16)	65 (± 2)	137 (± 14) 127 (± 11) 130 (± 17)	131 (± 5)
600	41 41 20	65 63 52	67 (± 14) 66 (± 14) 68 (± 12)	67 (± 1)	138 (± 19) 128 (± 14) 137 (± 14)	134 (± 5)
2000	18 24 16	37 33 23	72 (± 16) 79 (± 15) 80 (± 12)	77 (± 5)	168 (± 20) 170 (± 24) 167 (± 25)	168 (± 2)

Table S3. Summary of mechanical unfolding data for (I27-Csp)₃-I27 at 40°C