Supplementary Information (ESI) for Soft Matter

Probing the stability of sterically-stabilized polystyrene particles by centrifugal sedimentation

Huai Nyin Yow* and Simon Biggs

Institute of Particle Science & Engineering, School of Process, Environmental & Materials Engineering, University of Leeds, Leeds LS2 9JT, UK

* Email: h.n.yow@leeds.ac.uk

S1. Determination of Compressive Yield Stress at Initial Conditions, $P_y(\phi_0)$

The initial compressive yield stress, $P_y(\phi_0)$, can be determined according to the approach of Buscall and White^{1,2}, as proposed in Equation S1.

$$\left. \frac{dH}{dt} \right|_{0} = -\frac{(1 - \emptyset_0)u_0}{r(\emptyset_0)} \left(1 - \frac{P_{\mathcal{Y}}(\emptyset_0)}{\Delta \rho g \emptyset_0 H_0} \right) \tag{S1}$$

Where $\frac{dH}{dt}\Big|_0$ is the initial rate of change of sediment height, ϕ_0 is the initial (uniform) volume fraction of particle dispersion, $r(\phi_0)$ is the volume fraction dependent hindered settling factor, which is governed by $r(\phi) \to 1$ as $\phi \to 0$ and $r(\phi) \to \infty$ as $\phi \to 1$, u_0 is the sedimentation rate of an isolated particle, $P_y(\phi_0)$ is the compressive yield stress when volume fraction of particle dispersion is ϕ_0 , $\Delta \rho$ is the density difference between particle and liquid, g is the centrifugal acceleration at the bottom of the bed and H_0 is the initial sediment height.

For an initial particle volume fraction of 0.05 (in our experiments), the influence of $(1 - \phi_0)/r(\phi_0)$ is approximated to be of order 1. For simplification, $P_v(\phi_0)$ is represented as P_v subsequently. Therefore,

$$\left. \frac{dH}{dt} \right|_0 = -u_0 + \frac{u_0 P_y}{\Delta \rho g \phi_0 H_0}$$

Rearranging into a straight line equation (y = mx + c) by multiplication with $-\frac{1}{g}$ and plotting $\left(-\frac{1}{g}\frac{dH}{dt}\Big|_{0}\right)$ against $(\Delta\rho g\phi_{0}H_{0})^{-1}$,

$$\frac{dH}{dt}\Big|_{0} \left(-\frac{1}{g}\right) = \frac{u_{0}}{g} - \frac{u_{0}P_{y}}{\Delta\rho g\phi_{0}H_{0}} \left(\frac{1}{g}\right)$$

$$\frac{dH}{dt}\Big|_{0} \left(-\frac{1}{g}\right) = \left(-\frac{P_{y}u_{0}}{g}\right) \frac{1}{\Delta\rho g\phi_{0}H_{0}} + \frac{u_{0}}{g}$$
(S2)

Hence, Equation S2 can be plotted as a straight line of $\left(-\frac{1}{g}\frac{dH}{dt}\Big|_{0}\right)$ against $(\Delta \rho g \emptyset_{0} H_{0})^{-1}$, with y-axis intercept $\frac{u_{0}}{g}$ (denoted as I) and slope $-\frac{P_{y}u_{0}}{g}$ (denoted as $-IP_{y}$). As a result, the initial compressive yield stress, $P_{y}(\phi_{0})$, can be determined accordingly.

¹ R. Buscall and L. R. White, *J. Chem. Soc. Faraday Trans 1*, 1987, **83**, 873-891.

² R. G. de Krester, D. V. Boger and P. J. Scales, *Rheol. Rev.*, 2003, 125-165.

S2. Compressive yield stress data at equilibrium, $P_y(\phi_{eq})$

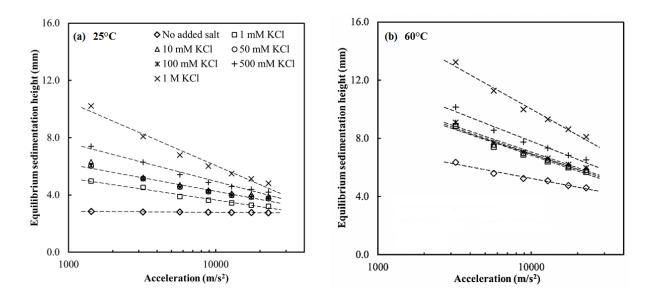


Figure S2.1: Equilibrium sedimentation height as a function of acceleration for 5 vol% PEGMA-stabilized polystyrene particle dispersions at varying electrolyte concentration at (a) 25°C and (b) 60°C, confirming the logarithmic decay of H_{eq} with acceleration in centrifugal field (Legend applicable to both graphs)