Supporting Information

1. Stability of Particle Size

Size distribution of particle was also measured after diluting 10 times or stored at 4 °C for 10 days. Figure S1 shows the size distribution of 305-nm nanomedicine at the experiment concentration (Day 0), diluting 10 times, and after 10 days. There was no significant change after dilution or 10-days storage at 4 °C.

Figure S1. Size distribution of 305-nm nanomedicine at Day 0 and Day 10, and after diluting 10 times at Day 0.

2. Numerical Calculation of the Average Adsorption Rate Constant ka.

In the main manuscript, we derived the following expression for the adsorption rate constant, k_a :

$$k_a = \frac{D^{2/3}}{Gamma\left(\frac{4}{3}\right)} \left(\frac{6K}{9bS}\right)^{1/3}$$
[S1]

where $K = \frac{Q}{\pi b}$ and $S = \int_{\tau=-\infty}^{\tau} h_{\sigma} h_{\tau} d\tau$. Diffusivity, *D*, can be calculated from the particle size using Stokes-Einstein equations:

$$D = \frac{k_B T}{6\pi R\eta}$$
[S2].

To calculate the average k_a over the measurement area of QCM-D (i.e. r \leq 3mm), the area integration is performed as follows:

$$\langle k_a \rangle = \int_{x=-r}^{x=r} \int_{y=0}^{y=\sqrt{r^2-x^2}} k_a \, dy \, dx$$
 [S3]

This integration was numerically carried out Matlab as described below.

clear all; a=0.005; % radius of the chamber, m

```
b=0.00064; % thickness of the chamber, m
r=0.003; % radius of measurement area, m
dx=0.00001; % step size of x and y for integral, m
du=0.01; % u, v were used for \tau, \sigma, du is the step size of u for integral
M=0:
for x=0-r:dx:r
  ym=sqrt(r^2-x^2);
  for y=0:dx:ym
     u = \log(\operatorname{sqrt}((x+a)^2+y^2)/\operatorname{sqrt}((a-x)^2+y^2));
     v=atan((a+x)/y)+atan((a-x)/y); % convert (x, y) to (\tau, \sigma)
     S=0;
     for i=-10:du:u
        S=S+1/(cosh(i)-cos(v))^2*du;
     end
     ka=1/0.893*(6/pi/b^2/a^2/S/9)^(1/3); % local ka without D
     M=M+ka;
  end
end
N=M*dx*dx/pi/0.003^2*2 % average ka without D
% < ka > = N*D^{(2/3)}*Q^{(1/3)}
```

3. Calculation of Mass Transport due to Diffusion at Different Directions

The concentration profile inside the QCM-D chamber was calculated to be:

$$\frac{c}{c_0} = \frac{\int_0^\eta e^{-m^3} dm}{Gamma\left(\frac{4}{3}\right)}$$
[S4].

The mass transport due to diffusion at different directions can be calculated by taking the second derivative of the concentration with respect to the direction of interest.

3.1 Diffusion at z-direction

$$-D\left[\left(\frac{\partial c}{\partial z}\right)|_{z} - \left(\frac{\partial c}{\partial z}\right)|_{z+dz}\right]h_{\sigma}d\sigma h_{\tau}d\tau = D\frac{\partial^{2}c}{\partial z^{2}} * dV$$
[S5]

$$\frac{\partial c}{\partial z} = \frac{c_0}{Gamma\left(\frac{4}{3}\right)} e^{-\eta^3} \frac{\partial \eta}{\partial z} = \frac{c_0}{Gamma\left(\frac{4}{3}\right)} e^{-\eta^3} \left(\frac{6K}{9DbS}\right)^{1/3}$$
[S6]

$$\frac{\partial^2 c}{\partial z^2} = \frac{c_0}{Gamma\left(\frac{4}{3}\right)} e^{-\eta^3} * \left(-3\eta^2\right) \left(\frac{6K}{9DbS}\right)^{2/3}$$
[S7]

Electronic Supplementary Material (ESI) for Soft Matter This journal is C The Royal Society of Chemistry 2013

3.2 Diffusion at τ -direction

$$-D\left[\left(\frac{\partial c}{h_{\tau}\partial\tau}\right)|_{\tau} - \left(\frac{\partial c}{h_{\tau}\partial\tau}\right)|_{\tau+d\tau}\right]h_{\sigma}d\sigma dz = D\frac{\partial}{h_{\tau}\partial\tau}\left(\frac{\partial c}{h_{\tau}\partial\tau}\right) * dV$$
[S8]

$$\frac{\partial c}{h_{\tau}\partial\tau} = \frac{c_0}{Gamma\left(\frac{4}{3}\right)} e^{-\eta^3} \frac{1}{h_{\tau}} \frac{\partial \eta}{\partial\tau} = \frac{c_0}{Gamma\left(\frac{4}{3}\right)} e^{-\eta^3} \eta \frac{1}{3} S^{-1} h_{\sigma}$$
[S9]

$$\frac{\partial}{h_{\tau}\partial\tau} \left(\frac{\partial c}{h_{\tau}\partial\tau}\right) = \frac{c_0}{Gamma\left(\frac{4}{3}\right)} e^{-\eta^3} \left[\frac{1}{3S}\frac{\partial\eta}{\partial\tau} - \frac{\eta h_{\tau}h_{\sigma}}{3S^2} + \frac{\eta}{3S}\frac{\partial h_{\sigma}}{h_{\tau}\partial\tau} - \eta^3 S^{-1}\frac{\partial\eta}{\partial\tau}\right]$$
[S10]

3.3 Diffusion at σ -direction

$$-D\left[\left(\frac{\partial c}{h_{\sigma}\partial\sigma}\right)|_{\sigma} - \left(\frac{\partial c}{h_{\sigma}\partial\sigma}\right)|_{\sigma+d\sigma}\right]h_{\tau}d\tau dz = D\frac{\partial}{h_{\sigma}\partial\sigma}\left(\frac{\partial c}{h_{\sigma}\partial\sigma}\right) * dV$$
[S11]

$$\frac{\partial c}{h_{\sigma}\partial\sigma} = \frac{c_0}{Gamma\left(\frac{4}{3}\right)} e^{-\eta^3} \frac{1}{h_{\sigma}} \frac{\partial \eta}{\partial\sigma} = \frac{c_0}{Gamma\left(\frac{4}{3}\right)} e^{-\eta^3} \frac{1}{h_{\sigma}} \eta \frac{1}{3} S^{-1} \int_{\tau=-\infty}^{\tau} \frac{\partial}{\partial\sigma} (h_{\sigma}h_{\tau}) d\tau$$
[S12]

Let
$$\int_{\tau=-\infty}^{\tau} \frac{\partial}{\partial\sigma} (h_{\sigma} h_{\tau}) d\tau = M$$
 [S13]

$$\frac{\partial}{h_{\sigma}\partial\sigma} \left(\frac{\partial c}{h_{\sigma}\partial\sigma}\right) = \frac{c_0}{Gamma\left(\frac{4}{3}\right)} e^{-\eta^3} \left[\frac{-\eta M}{3(h_{\sigma})^3 S} \frac{\partial h_{\sigma}}{\partial\sigma} + \frac{M}{3h_{\sigma}^2 S} \frac{\partial \eta}{\partial\sigma} - \frac{\eta M^2}{3h_{\sigma}^2 S^2} + \frac{\eta}{3h_{\sigma}^2 S} \frac{\partial M}{\partial\sigma} - \frac{\eta^3 M}{h_{\sigma}^2 S} \frac{\partial \eta}{\partial\sigma}\right]$$
[S14]

where
$$\eta = z \left(\frac{6K}{9DbS}\right)^{1/3} = z \left(\frac{6K}{9DbS}\right)^{1/3}; K = \frac{Q}{\pi b}$$
; and $S = \int_{\tau = -\infty}^{\tau} h_{\sigma} h_{\tau} d\tau.$ [S15]

$$\frac{\partial \eta}{\partial \tau} = z \left(\frac{6K}{9Db}\right)^{1/3} \frac{1}{3} S^{-\frac{2}{3}} h_{\sigma} h_{\tau} = \eta \frac{1}{3} S^{-1} h_{\sigma} h_{\tau}$$
[S16]

$$\frac{\partial \eta}{\partial \sigma} = z \left(\frac{6K}{9Db}\right)^{1/3} \frac{1}{3} S^{-\frac{2}{3}} \int_{\tau=-\infty}^{\tau} \frac{\partial}{\partial \sigma} (h_{\sigma} h_{\tau}) d\tau = \eta \frac{1}{3} S^{-1} \int_{\tau=-\infty}^{\tau} \frac{\partial}{\partial \sigma} (h_{\sigma} h_{\tau}) d\tau = \eta \frac{1}{3} S^{-1} M$$
[S17]

$$\frac{\partial \eta}{\partial z} = \left(\frac{6K}{9DbS}\right)^{1/3} = \frac{\eta}{z}$$
[S18]

Table S1 summarizes the calculated diffusion induced mass transport at τ -, σ -, and z-directions for selection locations. As can readily be seen, the magnitude of the mass transport due to diffusion at z-direction was much larger than that at τ - and σ -directions.

	Position	Diffusion (kg/s)	D _z /D _σ	(x,y,z) m
τ	0	1.35E-05		
σ	2.356194	-2.45E-05	-2.16E+04	(0, 2E-3, 1E-5)
Z	1.00E-05	5.30E-01		
τ	0	1.35E-05	2465.04	
σ	3.926991	-2.45E-05	-2.16E+04	(0, -2E-3, 1E-5)
Z	1.00E-05	5.30E-01		
τ	-1	4.72E-05	6 405 - 04	
σ	2.356194	-3.33E-05	-6.10E+04	(-2.6E-3, 1.5E-3, 1E-5)
Z	1.00E-05	2.03E+00		
τ	-1	8.25E-89	2.35E+05	(-2.6E-3, 1.5E-3, 1E-4)
σ	2.356194	8.08E-91		
Z	1.00E-04	1.90E-85		
τ	-1	9.10E-06	-6.51E+03	(-2.6E-3, 1.5E-3, 1E-5)
σ	2.356194	-4.30E-05		
Z	1.00E-05	2.80E-01		
τ	0	1.40E-06	-2.11E+03	(0, 1.5E-3, 1E-6)
σ	2.356194	-2.70E-06		
Z	1.00E-06	5.70E-03		

Table S1. Calculated diffusion induced mass transport at τ-, σ-, and z-directions for some selected points

The following Matlab code was used to numerically calculate the mass transport due to diffusion shown above.

```
function y = Diffusion(x1, x2, x3)
%x1=tao, x2=sigma, x3=z
%y1,y2,y3: diffusion at x1,x2,x3
c0=500;
a=0.005;
Q=2.5E-9;
b=0.64E-3;
D=5.45E-12; %diffusion coefficient for 90-nm partilces
gamma=0.893; %Gamma(4/3)
K=Q/pi/b;
s=0;%s=S/a^2
m=0;%m=ds/dx2
n=0;%n=dm/dx2
dx1=0.01;
      for
           i=-30:dx1:x1
            s=s+1/(cosh(i)-cos(x2))^2;
            m=m-2/(\cosh(i)-\cos(x^2))^{3}\sin(x^2);
            n=n+6/(\cosh(i)-\cos(x^2))^{4} \sin(x^2) \sin(x^2) - 2/(\cosh(i)-\cos(x^2))^{3} \cos(x^2);
      end
S=dx1*s*a^2;
M=dx1*m*a^2;
N=dx1*n*a^2;
h=a/(cosh(x1)-cos(x2));
eta=x3*(6*K/9/D/b/S)^(1/3);
etax1=eta/3/S*h^2; %d(eta)/dx1
etax2=eta/3/S*M; %d(eta)/dx2
```

Electronic Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2013

```
y1=1/3/S*etax1-1/3*eta/S^2*h^2+1/3*eta/S/h*(-1)*a/(cosh(x1)-cos(x2))^2*sinh(x1)-
eta^3/S*etax1;
y2=M*eta/h^3/3/S*a/(cosh(x1)-cos(x2))^2*sin(x2)+etax2*M/h^2/3/S-
M^2*eta/3/h^2/S^2+N*eta/h^2/3/S-eta^3*M*etax2/h^2/S;
y3=-3*eta^4/x3^2;
y=-1*D*[y1 y2 y3]*c0/gamma*exp(-3*eta^3);
end
```

4. List of Variables and Abbreviations

- a: the distance from inlet/outlet to center of the QCM chamber, m
- b: the depth of the QCM chamber gap, m
- c: the mass concentration of nanomedicine in solution, g/m^3
- c_0 : the mass concentration of nanomedicine in inlet solution, g/m³
- D: diameter of nanomedicine, m
- D_c : the diffusion coefficient, m²/s
- h_{σ}, h_{τ} : scale factors for σ coordinate and τ coordinate, m

K:
$$Q/\pi b$$
, m²/s

- k_B : Boltzmann constant, m² kg s⁻² K⁻¹
- k_a : the rate constant of adsorption, m/s
- k_r : the rate constant of removal, 1/s
- m_s : the mass concentration of nanomedicine in bulk solution, g/m³
- r_1 , r_2 : distance of a point to two foci F_1 and F_2 , m
- *Q*: flow rate of fluid, m^3/s
- R: radius of nanomedicine, m
- R(c): unknown intrinsic kinetic rate expression for particle adsorption, g/m²s
- S: the sweep area from $\tau = -\infty$ (inlet) to $\tau = \tau$ with the width of $h_{\sigma} d\sigma$, m²
- T: temperature, K
- t: time, s
- *u*: $z \times [6Kd\sigma/(9bDS)]$ 1/3, similarity variable used for solving Equation 17
- v_{σ} , v_{τ} , v_z : fluid velocities at σ , τ and z coordinate, m/s
- η : the fluid viscosity, kg/(m·s)

 θ : the ratio of non-deformed to total nanomedicine mass on the surface of the sensor ($\theta = \Gamma_{\alpha}/\Gamma$).

 Γ_{α} : the concentration of α -particles (reversibly bound particles) on the sensor surface, g/m²

 \varGamma the concentration of nanomedince on the sensor surface, g/m^2

 Γ^* : the maximum surface concentration of nanomedicine that can cover the surface, g/m^2