Supporting information for Spiral layer undulation defects in B7 liquid crystals

Dong Chen^a, Dong Ki Yoon^{a,b}, Joseph E. Maclennan^a, Matthew A. Glaser^a, Eva Korblova^c, David M. Walba^c, Nélida Gimeno^d, M. Blanca Ros^d, Rajdeep Deb^e, Nandiraju V. S. Rao^e, and Noel A. Clark^{a*}

^aDepartment of Physics and the Liquid Crystal Materials Research Center, University of Colorado, Boulder, CO 80309-0390, USA

^bGraduate School of Nanoscience and Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea. ^cDepartment of Chemistry and Biochemistry and the Liquid Crystal Materials Research Center, University of Colorado, Boulder, CO 80309-0215, USA ^dDepartamento de Química Orgánica, Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón,

Universidad de Zaragoza, 50009-Zaragoza, Spain °Chemistry Department, Assam University, Silchar, 788011, India *E-mail: noel.clark@colorado.edu

Figure S.1: FFTEM image of MHOBOW quenched at T=100°C and then fractured in the bulk. It is evident that the sample tends to fracture along the layer undulations (red arrow), indicating that the polarization modulation stripes have distinct boundaries.