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1. Calculation of Porod invariant using the effective thickness traversed by x-

ray beam while passing through a colloidal droplet  

 i) Spherical droplet with uniform volume fraction of colloids: 

(AB)2=R2-x2 

Effective thickness=2AB So, Porod invariant(Q)  2AB= ( R2-x2)0.5 
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Fig. Supp. 1. Calculation of Porod invariant across a droplet with uniform volume fraction of colloids.  
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 ii) Hollow Spherical grain: 

(AB)2=Ro
2- Ri

2 

 For x<Ri, (MP)2=Ro
2-x2 

MP=MN+NP              and                (MN)2=Ri
2-x2   and (MP)2-(MN)2=Ro

2-Ri
2   

So, Porod invariant  22(1-2) (MP-MN)=2 2(1-2) (Ro
2-Ri

2)/(MP+MN) 

                                                                             = 22(1-2) (Ro
2-Ri

2)/ [(Ro
2-x2)0.5+( Ri

2-x2)0.5] 

For Ri <x < Ro, then  

Porod invariant   22(1-2) ( Ro
2-xi

2)0.5 

 

 

 

 

 

 

 

 

A 

B 

Ro 

C 

x Ri 

O 

N 

P 

M 

Fig. Supp. 2. Porod invariant in case of hollow spherical grain. 
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iii) Core and shell at different volume fraction (1 and 2 , respectively) : 

Porod invariant   [2(MP-MN)2(1-2)+(2MN)1(1-1)] 

For x<Ri ,  

Porod invariant  21(1-1) ( Ri
2-x2)0.5+2 (1-2) (Ro

2-Ri
2)/ [(Ro

2-x2)0.5+( Ri
2-x2)0.5] 

For Ri<x<Ro,  

Porod invariant  22(1-2) ( Ro
2-x2)0.5 
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Fig. Supp. 3. Calculation of Porod invariant for the situation where core and shell are at different volume 

fractions of colloids.  
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Form factor and structure factor of colloids for standard experiments performed using 

colloids in capillary tube:  
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Fig. supp. 4. (Top)Form factor and structure factor of the stable dispersion. (Bottom) Form factor and 

structure factor of the NaCl destabilized LUDOX dispersion. 
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Fig. supp. 5. Schematic diagram illustrating r elation between the droplet thickness measured at any time 

and its actual radius at that time.  

At time t=0, the horizontal scanning measures the diameter (2R) of the droplet. At other time a chord 

(2X) other than the diameter (2R
/
) is measured. To correlate the measured length 2X with diameter at that 

time one can use the following formula. From the above figure, 
2/ / 2R R R X     

and thus 

2 2
/

2

R X
R

R


 . So, one can estimate the diameter at later time from the measure value of X. 
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 Fig. supp. 6. Variation of external droplet volume with time in isotropic and anisotropic cases.  
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Calculation of initial colloidal concentration required to completely coat the surface of a droplet 

 

From the conservation of particle number in the droplet, one gets 
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To estimate the lowest concentration required for the shell formation at t=0, it is assumed that all the 

nanoparticles take part in shell formation to completely coat the droplet surface by forming monolayer 

leaving no particle in the core. , In this case, Rin=Ro-2rp. shell=c critical concentration) and core.  The 

expression for f0 can be as estimated from the above equation as follows 

 3 3

0 0

0 3

0

( 2 )c pR R r

R




 
  

If R0=1.5 mm, rp=5 nm,  c  is taken to be 0.74, then the value of  0 in this case becomes 1.5x 10-5. We 

would like to point out that such a case can happen only with extremely fast drying without shrinkage of 

droplet, where all particles immediately can form a shell leaving no particle at core.  
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