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Fig. S1. Convergence of Jarzynski equality in estimating free energy change as a function of number of molecules N
used in ensemble for λ−DNA (contour length ≈ 21 µm) in extensional flow, where the polymer is modeled as a single
mode dumbbell. Polymers are stretched from fractional extension of ≈ 0.32 to 0.38. The horizontal line represents
analytical estimate from integrating the Marko-Siggia force relation.
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Fig. S2. Application of the nonequilibrium framework to experimental data on polymer stretching dynamics in ex-
tensional flow. (a) Individual (light) and ensemble average (dark) stretching trajectories of 7-λ-DNA molecules in
extensional flow at Wi = 0.98. (b) Molecular free energy landscape determined from applying JE to experimen-
tal stretching trajectories. Solid line is the integrated Marko-Siggia (IMS) relation with contour length as fitting
parameter. (Inset) Average dissipated work as a function of molecular extension. Data shown are mean values ± SD.

Supplementary text

Derivation for rate of work

In order to calculate the work done by the fluid on stretching a polymer molecule, the rate of
work needs to be determined. Considering the hydrodynamic drag on a polymer chain, there are
two “limits” or stretching regimes for a polymer stretching in flow.1 In the coiled conformation (or
Zimm regime), the chain behaves as a random coil with a constant drag coefficient ζ.2 Zimm theory
is applicable in this regime as suggested by experimental diffusion data for single DNA molecules
of comparable size.3 The second regime is the stretched state of a polymer chain, where a polymer
chain behaves as a slender body with a drag coefficient that increases approximately linearly with
chain extension. Several prior publications have confirmed that slender body theory is reasonably
applicable for polymers stretched in extensional flow, where a chain extends along the extensional
flow axis an the flow has zero vorticity1,4. In this regime, we invoke slender body relation for
hydrodynamic drag by analyzing single molecule images of DNA molecules stretched in flow, which
allows for calculation of the projected chain extension in flow. Using this approach, we determined
the work rate as a function of chain extension.

Coiled conformation (Zimm regime)

Here, we treat the polymer molecule as sphere of size Rg, where Rg is the radius of gyration of
the molecule, with a constant drag coefficient ζ. The drag force on the molecule is then given by
Fdrag = ζu, where u is the unperturbed fluid velocity. In a planar extensional flow, the unperturbed
fluid velocity is given as u = ε̇[x,−y] in cartesian coordinates, where ε̇ is the applied strain rate. For
convenience, we switch to spherical coordinates such that u = ε̇Rg sin θ[cosφ,− sinφ]. Using this
coordinate, the work rate ẇ for the sphere is then given by

∫
dΩu ·Fdrag, where the integral is over

the the differential solid angle dΩ = sin θdθdφ. Based on this analysis, the work rate for the sphere
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is:

ẇ =

∫ 2π

φ=0

∫ π

θ=0

ζε̇2R2
g sin3 θdθdφ =

8

3
πζε̇2R2

g. (1)

For the purpose of experimental analysis, we express the work rate in terms of end-to-end extension
x (obtained from single molecule measurements) by using the fact that Rg = x/

√
6 for linear chains.

Therefore, the work rate ẇ = 4
9
πζε̇2x2.

Stretched conformation (slender body regime)

Here, we treat the polymer molecule as slender body of length x and diameter d, where x is the
end-to-end extension of the molecule and d is the molecular diameter of DNA = 2nm. Slender body
theory predicts that the drag force on a body suspended in a fluid in uniform flow at the velocity u is
given as F drag = 2πηsx

ln(x/d)
u, where ηs is the solvent viscosity. Therefore, for a slender body in a planar

extensional flow, the drag force on a differential element ds of a slender body dF drag = 2πηsε̇sds
ln(x/d)

.5

Furthermore, the work rate is given by
∫
udF drag. Using this approach, the work rate for a slender

body is:

ẇ =

∫ x
2

s=−x
2

2πηsε̇
2s2

ln(x/d)
ds =

1

6
πηsε̇

2 x3

ln(x/d)
. (2)

The work done by the fluid on the molecule is then determined by integrating the work rate from
time zero (at zero flow) to the time required to reach a final extension.

Transition between regimes

The transition between the Zimm regime and the slender body regime is determined by finding the
extension at which the work rates in the coiled and stretched configurations are equal. Specifically,
the crossover extension corresponds to the chain extension where equations (1) and (2) are equal.
From our analysis, the crossover extension depends only on ζ and is found to be ≈8 µm for the
parameters used in this study, which is in good agreement with large-scale Brownian dynamics
simulations with multi-body hydrodynamic interactions.1

Model discretization and free energy calculations

To validate our framework, we studied the effect of model discretization on free energy calcu-
lations using the JE for polymeric systems driven by external flows. We performed a systematic
study of the effect of coarse graining on JE calculations for mesoscopic bead-spring chains com-
monly used in BD simulations of polymers. We modeled λ-DNA with varying levels of discretization
while maintaining the contour length L of the chain constant. Work distributions for each level of
discretization and the corresponding free-energy landscape obtained via JE are shown in Fig. S3.
Importantly, we observed that the JE yields accurate results for mesoscopic models of polymers
(within a few kBT ), independent of the level of discretization for models ranging from a simple
dumbbell to multi-bead spring chains. We found that finer levels of discretization allowed for the
use of fewer molecules in an ensemble (up to an order of magnitude less) required to obtain the free-
energy landscape, whereas higher levels of discretization allow for more coarse stratification schemes.
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Fig. S3. Free-energy landscape of λ-DNA determined by applying the JE with varying levels of chain discretization Nb =
6, 10, 20. IMS: integrated Marko-Siggia relation. Mean ± SD of free-energy landscape are shown for finer levels of discretizations.
(Inset) Work distributions for varying levels of coarse-graining for λ-DNA in extensional flow.
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