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1 Magnetic force modulation

The basic setup of our AFM force spectroscopy experiment is depicted in Figure 1 of the manuscript.
Essentially, we glue a small magnet in the back of a regular AFM cantilever (referred now as
magnetic cantilever, or MC), and place a coil below the sample stage such that the MC is positioned
at a distance x of the coil such that the tip lies in coil axis. Flowing through the coil, there is a
AC current of the form:

iAC(t) = i0 exp iωt (1)

where ω is the oscillation frequency and i0 is the current amplitude. The magnetic field in the
proximity of the MC can be approximated by the magnetic field of N current loops of radius a at
a distance x along their axis, such that:

~BAC(t) =
µ0NiAC(t)a2

2(x2 + a2)3/2
x̂ (2)

We can also write ~BAC(t) in terms of the magnetic dipole moment of the coil µcoil(t) = (πa2)NiAC(t)
as:

~BAC(t) =
µ0µcoil(t)

2π(x2 + a2)3/2
x̂, (3)

where µ0 is the vacuum permeability. This AC magnetic field is not uniform since the magnetic
field lines outside of the coil are divergent. However, what really matters here is wheter the magnet
glued to the cantilever will interact with ~BAC(t). Since the MC has a permanent magnetic dipole
moment µMC , the potential energy of µMC in the presence of ~BAC(t) is given by:

U = −~µMC · ~BAC(t) (4)

In principle, we do not know which is the direction of ~µMC , but it will work as long as it has a
vertical component to couple with ~BAC(t). Assuming that ~µMC = µMC x̂, an approximate form of
force acting on the MC due to BAC(t) is given by:

~FAC(t) = ∇
(
~µMC · ~BAC(t)

)
(5)

Finally, the approximate vertical force acting on the MC located at a distance x above the coil is:

~FAC(t) = − 3

2π

µ0µMCµcoil(t)x

(a2 + x2)5/2
x̂ (6)

By expanding the above expression around an average distance x0 between MC and the coil, we
obtain:
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FAC(x)− FAC(x0) = −3µ0µMCµcoil(t)

2π

[
1

(a2 + x20)
5/2
− 5x20

(a2 + x20)
7/2

]
(x− x0). (7)

Replacing µcoil(t) = πa2i0 exp(iωt), we obtain that the effective driving force on the MC has the
form:

Fdrive = G(a,N, i0, x0, µMC)(x− x0) exp(iωt) = FB exp(iωt), (8)

where the amplitude of the driving force FB depends on a few parameters of the experimental
setup, namely the geometrical characteristics and current amplitude of the coil, and the magnetic
dipole moment of the cantilever.
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Figure S 1: Schematics of the different forces acting on cantilever immersed in liquid (a) oscillating
freely with amplitude A0, and oscillating (b) in contact with a viscoelastic sample with amplitude
A1. Fdrive indicates the modulating force that makes the cantilever oscillate with a given frequency
ω. Fk is the restorating force acting on the deflected cantilever. Fviscous describes the viscous
interaction of the cantilever with the liquid, F †

viscous is the viscous force due to the liquid + sample,
and Fcontact is the elastic component of contact force between the cantilever and sample.
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2 Motion of the free cantilever

Figure S1(a) shows a free MC subjected to an oscillating magnetic field. The resultant force on the
MC is given by:

F
(free)
total = Fdrive + Fk + Fviscous, (9)

Fdrive is the oscillating magnetic force, Fk is the restoration force due to the deflected cantilever,
which can described by Hooke’s law Fk = kc(y − ȳ) (y is the cantilever deflection, and ȳ is the
equilibrium cantilever deflection), and Fviscous represent the viscous forces due to the hydrodynamic
interaction of the cantilever with the liquid. The equation of motion for the free cantilever is
(assuming ȳ = 0):

m0
d2y0(t)

dt2
= Fdrive − kcy0(t)− η0

dy0(t)

dt
, (10)

where m0 is the effective mass of the cantilever, kc is the cantilever spring constant, y0(t) is the
free cantilever deflection, ȳ0 is the free equilibrium deflection. The viscous force was written in the
form

Fviscous = η0
dy0(t)

dt
(11)

where η0 is the hydrodynamic drag coefficient of the free cantilever moving in the liquid. The final
differential equation to be solved for the free cantilever is:

d2y0(t)

dt2
+ b0

dy0(t)

dt
+ ω2

0y0(t) = Fdrive/m0, (12)

where b0 = η0/m0, ω
2
0 = kc/m0 is the resonance frequency of the cantilever. This equation repre-

sents the well known problem of the driven harmonic oscillator whose solution is of the form:

y0(t) = A0 exp (iωt+ φ0) (13)

and whose amplitude A0 and phase angle are respectively given by:

A0 =
FB

kc

1

[(1− (ω/ω0)2] + i(b0ω/ω2
0)
. (14)

tanφ0 = Im[A0]/Re[A0]. (15)

Figure S2 shows the qualitative dependence of A0 with ω for different damping regimes. By
comparing the experimental behavior of the measured values of A0 (in Figure 4 of the manuscript)
with Fig. S2, we clearly see that measured A0 fits well in the strongly damped regime where
b0/ω0 > 1. This explains why we do not observe an increase in A0 near as ω approaches ω0.
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Figure S 2: Dependence of A0 (in units of FB/kc as in Eq. 14) with the driving frequency ω for
different damping regimes: from lighest to darkest color, the damping parameter b0/ω0 is 0.5, 1.0,
2.0 and 10.0, representing the transition from underdamped to critically damped regimes.

3 Motion of the cantilever in contact with the sample

Figure S1(a) shows a MC in contact with a viscoelastic sample and subjected to an oscillating
magnetic field. The resultant force on the MC is given by:

F
(contact)
total = Fdrive + Fcontact + Fk + F †

viscous. (16)

Therefore, the effective equation of motion of the cantilever in contact y1(t) is given by:

m1
d2y1(t)

dt2
+ η1

dy1(t)

dt
+ kcy1(t) = Fdrive + Fcontact, (17)

The viscous force of the contact case is written as

F †
viscous = η1

dy1(t)

dt
, (18)

where η1 is the effective hydrodynamic friction coefficient of the liquid + viscoelastic sample.
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Figure S 3: Schematics of the force modulation of soft samples.

3.1 Modulation of the contact force and Hertz theory

Figure S3 shows the effect of the modulation in the contact force. The experiment is performed
such that we first produce an equilibrium indentation δ0 in the viscoelastic sample, and turn on
the sinusoidal modulation with small amplitude which will cause a modulated indentation with
the same frequency of the force modulation. The contact force will oscillate around Fcontact(δ0)
such that we can expand Fcontact(δ) in a Taylor series to determine the effective modulation of the
contact force due to the oscillating magnetic field:

Fcontact(δ) ≈ Fcontact(δ0) + F ′
contact(δ0)(δ − δ0) (19)

Since the force modulation is directly applied to the cantilever while the piezo stays at rest, we can
safely assume that y1(t) − ȳ1 = δ − δ0, where ȳ1 is the initial cantilever deflections that produced
the indentation δ0. In addition, we note that kcȳ1 = Fcontact(δ0). This leads to the alternative form
of the equation of motion

d2y1(t)

dt2
+ b1

dy1(t)

dt
+ ω2

1(y1(t)− ȳ1) = Fdrive/m0, (20)

where b1 = η1/m0 and ω2
1 = [ω2

0 + F ′
contact(δ0)/m0] = ω2

0[1 + F ′
contact(δ0)/kc]. This equation

states that the contact of the cantilever with the viscoelastic surface induces a small change in
the resonance frequency. To estimate F ′

contact(δ0), we make use of the Hertz theory for pyramidal
indenters:

Fcontact =
1√
2
E′δ2 tan θ, (21)
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where E′ = E/(1 − ν2). ν represents the Poisson ratio of the sample, and θ is the half-opening
angle of the cantilever tip. Then, we obtain F ′

contact(δ0) =
√

2E′ tan θδ0. Since, the E and ν
are two unknown quantities, we can estimate F ′

contact(δ0) = 2Fcontact(δ0)/δ0 = kcdtrigger/δ0. δ0
is easily determined by measuring a traditional force curve just before the frequency-modulated
measurement. For kc = 0.01 N/m and dtrigger = 0.2 µm, typical values of indentations δ0 range
between 1.0 - 2.0 µm, depending on the cell. Therefore, the values of F ′

contact(δ0)/kc range between
0.1 - 0.2. Finally, The solution of Eq. 20 is:

y1(t) = ȳ1 +A1 exp (iωt+ φ1) , (22)

3.2 Comparison of CM1 and CM2 models

Note that we have two equivalent model equations given by Eqs. 17 and 20. The former exhibits
explicitly the effective contact force given by Eq. 19, and the latter just assumes that the effect of
contact modifies the resonance frequency of the cantilever. Those models are labeled as CM2 and
CM1, respectively in the manuscript. The idea behind CM2 is to describe the effective motion of
the cantilever with minimum number of parameters, while the idea behind CM1 is to compared
the measured solution with actual force contact details used in the experiment.
and whose amplitude A1 is given by :

A
(CM1)
1 =

FB

kc

1

[1 + (F ′
contact(δ0)/kc)− (ω/ω1)2] + i(b1ω/ω2

0)
, (23)

A
(CM2)
1 =

FB

kc + ks

1

[(1− (ω/ω1)2] + i(b1ω/ω2
1)
, (24)

4 Determination of the sample stiffness

In the previous sections, we described the motion of the cantilever free and in contact with a
viscoelastic sample in terms of the solution of the driven harmonic oscillator. The most striking
differences between the cantilever motions are: (i) the oscillation amplitudes are different, being
A0 for the free cantilever and A1 for the cantilever in contact with a viscoelastic sample. (ii) The
resonance frequencies and phase angles for both motions are also different (ω0 6= ω1 and φ0 6= φ1).

To estimate the sample stiffness we simplify both free and in-contact motion by a simple ar-
rangement of springs. This is shown in Fig. 4. The free motion is described by a mass connected
to a single spring (representing the cantilever). The in-contact motion can be described by a mass
connected to two springs (representing the cantilever and sample). Assuming that we pull down
the mass with a given force FB in both systems (e.g., the magnetic force). In the free cantilever
model, the displacement is A0. For the in-contact system, since the same force has to deform
two springs, we obtain a smaller displacement A1 (A1 < A0). By equating the forces, we obtain
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kcA0 = (kc +ks)A1, which leads to a sample stiffness ks that can be determined in terms of A0 and
A1 with:

ks = kc

(
A0

A1
− 1

)
. (25)

For a very stiff sample, no indentation will occur, thus the amplitude in contact A1 will be zero,
leading to ks → ∞. For a very soft sample, the amplitude in contact A1 → A0, which leads to
ks → 0.

In the limit of ω → 0 we have only elastic response because the viscous components dyn/dt→ 0.
By replacing this limit in Eqs. 14 and 23, we obtain Eq. 10 of the manuscript. For ω > 0, viscous
effects are present, and ks represents an effective spring constant.

kc

A0

kc

ks

A1

contactno contact

Figure S 4: Association of springs to determine the effective sample stiffness ks in terms of the
cantilever stiffness kc, and the oscillation amplitudes A0 and A1.

5 Phase lag between free and in-contact motions

The phase lag φ between the cantilever motions, which are directly related to the internal viscosity
of the sample, is calculated by

φ = φ1 − φ0. (26)

The phase angles of each type of cantilever motion is

tanφn = Im[An]/Re[An] (27)

For small angles, one has within the CM2 approach:
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tanφn ≈ φn = bnω/(ω
2 − ω2

n). (28)

We can make a further approximation assuming ω1 ≈ ω0 to determine the phase difference as:

φ ≈ (b1 − b0)ω
ω2 − ω2

0

(29)

Since b1 describes the viscous damping due to liquid + sample, and b0 is only due to the liquid,
the phase difference φ carriers only the information about the viscosity of the sample.

6 Robustness of the model concerning the magnetic cantilever and
coil setup

The amplitudes A0(ω) and A1(ω) are the main quantities to extract the effective sample stiffness.
Besides the well known frequency dependency, they also contain a dependence on the amplitude of
the magnetic force FB, which was described in Section 1.

Since the sample stiffness ks is a function of the ratio A0/A1, the FB term in the numerator
of both A0 and A1 are cancelled. This effectively eliminates the dependence of the model on the
magnetic dipole moment of the cantilever µMC . The main important ingredient here is that the
magnetic force is strong enough to produce a deflection in the cantilever.

Another important parameter of the experimental design is the current amplitude i0 flowing
through the coil. Since the coil circuit is an oscillator itself, it also has its own resonance frequency
ωcoil and frequency-dependent amplitude i0(ω) similar to A0,1(ω). Therefore, the coil circuit has
dramatical influence in the ability to obtain good cantilever deflections.

One should also note that the current amplitude i0(ω) is the same for both free and in-contact
motions of the cantilever. In the individual measurements of A0(ω) and A1(ω), we have to be
aware that two resonance frequencies may play a role: the cantilever resonance frequency ωn and
the coil resonance frequency ωcoil. However, the influence of the coil resonance is cancelled in the
ratio A0(ω)/A1(ω), removing away its influence in the determination of both samples stiffness ks
and phase angles φn, which are the aimed quantities of our theory.

The critical details of our experimental setup are:

• The aimed range of frequencies that samples will be subjected must avoid the resonance
frequencies ω0 and ωcoil because the amplitude A0 can decrease to very small values. The
former can be determined by the well known thermal method, and the latter can be monitored
by measuring A0(ω).

• A0(ω) must exhibit a curve similar to Fig. S2. If some resonance frequency appear in the
measurement, one simple method to rule out wheter this resonance is due to the coil is to
measure A0(ω) in and out of the liquid. The added mass of the liquid does not influence ωcoil.
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• The most important requirement is to produce a sufficient amplitude oscillation of the MC
to indent the viscoelastic sample. By sufficient, we mean that both A0 and A1 must be
unequivocally larger than average thermal oscillation amplitude Ath, which can be estimated
as 〈Ath〉 =

√
kBT/kc. For room temperature and kc = 0.01 N/m, we obtain: 〈Ath〉 ≈ 1.0 nm.

By imposing a comfortable confidence margin, let’s assume that A1 ≥ 5〈Ath〉. For soft samples
whose stiffnesses range from 0.1kc to 1.0kc, Eq. 25 indicates that a value of A0 ≈ 10 nm is
more than enough.

7 Comparison with other AFM based micro-rheology methods

There is another AFM based approach to perform micro-rheology experiments in soft samples (1, 2).
The main differences between this and our methodology are: (i) force modulation method, and (ii)
physical model used in the data analysis. These differences will be described individually in this
section.

7.1 Force modulation

The main difference between this and our experimental setup is depicted in the Fig. S5. In our
setup, the force modulation is applied directly to the MC, which is in contact with the sample.
This guarantees that the only phase lag between the magnetic force modulation Fdrive and the
corresponding cantilever oscillation is due to the viscosity of the liquid and sample. As for the
common setup found the literature, the force modulation is achieved by modulating the piezo
actuator that controls the distance between the sample and the cantilever tip. In this case, it is
necessary first to remove the phase lag of the piezo actuator, which could induce an error in the
determination of the viscoelastic properties of the sample, as pointed out by Alcaraz et al. (3).
Another striking difference between both experimental setups is that we construct our ks(ω) curves
by applying a single frequency per time, while the other approach generates a piezo modulation
with several frequencies spanning in several frequency decades. The frequency-dependent shear
moduli curves G(ω) are obtained by performing a Fourier analysis of the measured quantities.

7.2 Data analysis

The force modulation in Fig. S5(b) is obtained by modulating the distance between the sample
and cantilever with z(t) = z̄ exp iωt. The corresponding cantilever deflection is given by y(t) =
y0 + ȳ exp(iωt + φ), where φ is the phase lag due to the internal viscosity of the sample. The
sample indentation is obtained by δ(t) = z(t) − y(t), which is also an oscillating quantity of the
form δ(t) = δ0 + δ̄ exp(iωt+ φ). The model equation to describe the cantilever motion is:

m0
d2y(t)

dt2
+ kcy(t) = Fcontact + Fvisco. (30)
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Figure S 5: Comparison of AFM-based force modulation methods. In (a) the force modulation
is directly applied to the MC by means of an external oscillating magnetic field. Ib (b) the force
modulation is obtained by modulating the piezo actuator that controls the distance between the
sample and the cantilever.

In the frequency domain, this equation reads:(
1− ω2

ω2
0

)
kcy(ω) = Fcontact(ω) + Fvisco(ω). (31)

By using the hydrodynamic drag model of Alcaraz et al. (3), one has:

Fvisco(ω) = b(0)dδ/dt = ib(0)ωδ(ω) (32)

Assuming that the aimed range of frequencies to which the samples will be subjected is much
smaller than the resonance frequency ω0, one obtains:

kcy(ω) ≈ Fcontact(ω) + ib(0)ωδ(ω). (33)

By expanding the Hertz model (Eq. 21) around the equilibrium indentation δ0 we obtain an ex-
pression similar to Eq. 19.

Fcontact(δ) = Fcontact(δ0) +

√
2 tan θδ0E

(1− ν)2
(δ − δ0). (34)

By noticing that the shear modulus is related to the Young modulus as G = E/2(1+ν), the Fourier
transform of Fcontact becomes:

Fcontact(ω) =
2
√

2δ0 tan θ

(1− ν)
G(ω)δ(ω). (35)

The frequency-dependent shear modulus is obtained with:
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G(ω) =
(1− ν)kc

2
√

2δ0 tan θ

[
y(ω)

δ(ω)
− ib(0)ω

kc

]
. (36)

Equation 36 is the main expression used in references (1, 2) to obtain the shear modulus of the
viscoelastic samples. Essentially, they measure the time-dependent motion of the piezo actuator
z(t) and signal of the cantilever deflection y(t) to construct the dynamical indentation δ(t) =
z(t)− y(t). By plugging the hydrodynamic drag coefficient b(0) (see Ref. (3)) and the FFT of y(t)
and z(t) in Eq. 36, one obtains the frequency-dependent complex shear modulus of the viscoelastic
samples. The storage G′(ω) and loss G′′(ω)moduli are easily obtained with G′(ω) = Re[G(ω)] and
G′′(ω) = Im[G(ω)], respectively. The phase lag is obtained with tanφ(ω) = G′′(ω)/G′(ω).

The most notable difference between our model and the one described above is that our method-
ology aims to determine the frequency-dependent sample stiffness ks(ω) and the phase angle φ(ω),
while the method above aims to determine the complex shear modulus G(ω).

It is possible to demonstrate that both models are equivalent. From Eq. 19, one can easily
obtain that the sample stiffness at the indentation δ0 is given by:

ks =
Fcontact(δ)− Fcontact(δ0)

δ − δ0
= F ′

contact(δ0). (37)

By plugging Hertz model for conical indenters above, one obtains:

ks =
2
√

2 tan θδ0
1− ν

G, (38)

where G = E/[2(1 + ν)]. The above expression shows that the stiffness ks and the shear modulus
G are related to each other by a length factor (δ0), by the indenter geometry, and by the Poisson
ratio of the sample. With the help of Eq. 25, G can be written in terms of A0 and A1:

G =
1− ν

2
√

2 tan θδ0

[
kc

(
A0

A1
− 1

)]
. (39)

7.3 Summary of differences between methodologies

The main differences between both methodologies are summarised below:

• Our method applies the force modulation directly to the indenter, while the other method-
ology modulates the distance z(t) between the sample and cantilever in order to generate a
modulated indentation δ(t). This requires the removal of the phase lag due to the piezo and
electronic circuitry of the AFM.

• The hydrodynamic drag due to the liquid is naturally included in our methodology, while in
the other approach one must know a priori the hydrodynamic drag factor b(0) in order to
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determine the complex shear modulus in Eq. 36. The method to obtain b(0) is described in
detail by Alcaraz et al. (3).

• Our methodology aims to obtain the phase lag φ and stiffness ks which is related to the shear
modulus G by Eq. 38, while the other methodology directly determine the storage G′ and
loss G′′ shear moduli.

• Since ks and G are connected to each other by a simple length factor and by the indenter ge-
ometry, both must exhibit the same frequency-dependent behavior. However, determining ks
involves no previous knowledge of the indenter geometry, Poisson ratio nor the hydrodynamic
factor b(0).
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