Effects of Molecular Geometry on the Self-Assembly of Giant Polymer-Dendron Conjugates in Condensed State

Xue-Hui Dong,^a Xiaocun Lu,^a Bo Ni,^a Ziran Chen,^a Kan Yue,^a Yiwen Li,^a Lixia Rong,^b Tadanori Koga,^c

Benjamin S. Hsiao,^b George R. Newkome,^a An-Chang Shi,^d Wen-Bin Zhang^{*a} and Stephen Z. D. Cheng^{*}

^aDepartment of Polymer Science, College of Polymer Science and Polymer Engineering,

The University of Akron, Akron, OH 44325-3909, USA

^bDepartment of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400

^cChemical and Molecular Engineering Program, Stony Brook University, Stony Brook, New York,

11794-2275

^dDepartment of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

Figure S1. SEC chromatograms of PS_N with different degree of polymerization (see Table 1).

Figure S2. Typical ¹H NMR spectrum of PS_N -Br prepared *via* ATRP. The results are based on the samples with N = 19.

Figure S3. FT-IR spectra of PS_N -N₃ (red) and PS_N -*t*D (blue). The results are based on the samples with N = 19.

Figure S4. ¹³C NMR spectra of (a) Alkyne Functionalized, *t*-Butyl-protected Dendron; (b) $PS_N tD$; and (c) $PS_N D$. The results are based on the samples with N = 19.

Figure S5. Small angle X-ray scattering pattern (a, c) and TEM bright field image (b, d) of PS_{80} -*t*D and PS_{150} -D, respectively. The scale bar is 50 nm.

Figure S6. Temperature dependent SAXS patterns for PS₁₆-D, Lam (*a*); PS₂₄-D, DG (*b*); PS₃₀-D, Hex (*c*); and PS₉₀-D, BCC (*d*).

Figure S7. Temperature dependence of density of alkyne-functionalized dendron (Alkyne-D).

Figure S8. Temperature dependence of density of polystyrene.

 PS_{16} -D *PS*₂₄-*D PS*₆₀-*D* PS_{82} -D PS_{19} -D PS₂₈-D *PS*₃₅-*D* PS₈₀-D PS_{91} -D PS_{150} -D 20 °C 0.65236 0.69025 0.73786 0.76657 0.80411 0.87558 0.90369 0.90581 0.91433 0.94622 40 °C 0.653 0.76708 0.87588 0.90606 0.69085 0.73841 0.80456 0.90393 0.91455 0.94636 60 °C 0.65367 0.69149 0.76761 0.80502 0.87621 0.73898 0.90419 0.90631 0.91478 0.94651 80 °C 0.65442 0.69219 0.73962 0.7682 0.80554 0.87656 0.90448 0.90659 0.91504 0.94668 100 °C 0.65523 0.69295 0.74031 0.76883 0.8061 0.87695 0.90689 0.90478 0.91532 0.94686 140 °C 0.65703 0.69464 0.74184 0.77024 0.80734 0.87781 0.90547 0.90756 0.91593 0.94726 180 °C 0.65909 0.69658 0.74359 0.77186 0.80876 0.87879 0.90625 0.90833 0.91664 0.94771

Table S1. Temperature dependence of volume fraction f_{PS} .