Effects of Molecular Geometry on the Self-Assembly of Giant Polymer-Dendron Conjugates in Condensed State

Xue-Hui Dong, ${ }^{a}$ Xiaocun Lu, ${ }^{a}$ Bo Ni, ${ }^{a}$ Ziran Chen, ${ }^{a}$ Kan Yue, ${ }^{a}$ Yiwen Li, ${ }^{a}$ Lixia Rong, ${ }^{b}$ Tadanori Koga, ${ }^{c}$
Benjamin S. Hsiao, ${ }^{b}$ George R. Newkome, ${ }^{a}$ An-Chang Shi, ${ }^{d}$ Wen-Bin Zhang*a and Stephen Z. D. Cheng*
${ }^{\text {a }}$ Department of Polymer Science, College of Polymer Science and Polymer Engineering,

The University of Akron, Akron, OH 44325-3909, USA
${ }^{\text {b }}$ Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400
${ }^{c}$ Chemical and Molecular Engineering Program, Stony Brook University, Stony Brook, New York, 11794-2275
${ }^{\text {d Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada }}$

Figure S1. SEC chromatograms of PS_{N} with different degree of polymerization (see Table 1).

Figure S2. Typical ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PS}_{N}-\mathrm{Br}$ prepared via ATRP. The results are based on the samples with $N=19$.

Figure S3. FT-IR spectra of $\mathrm{PS}_{N}-\mathrm{N}_{3}$ (red) and $\mathrm{PS}_{N}-t \mathrm{D}$ (blue). The results are based on the samples with $N=19$.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectra of (a) Alkyne Functionalized, t-Butyl-protected Dendron; (b) $\mathrm{PS}_{N^{-}} t \mathrm{D}$; and (c) PS_{N}-D. The results are based on the samples with $N=19$.

Figure S5. Small angle X-ray scattering pattern (a, c) and TEM bright field image (b, d) of $\mathrm{PS}_{80}-t \mathrm{D}$ and $\mathrm{PS}_{150}-\mathrm{D}$, respectively. The scale bar is 50 nm .

Figure S6. Temperature dependent SAXS patterns for $\mathrm{PS}_{16}-\mathrm{D}$, Lam (a); $\mathrm{PS}_{24}-\mathrm{D}, \mathrm{DG}(b) ; \mathrm{PS}_{30}-\mathrm{D}$, Hex (c); and $\mathrm{PS}_{90}-\mathrm{D}, \mathrm{BCC}(d)$.

Figure S7. Temperature dependence of density of alkyne-functionalized dendron (Alkyne-D).

Figure S8. Temperature dependence of density of polystyrene.

Table S1. Temperature dependence of volume fraction f_{PS}.

	$P S_{16}-D$	$P S_{19}-D$	$P S_{24}-D$	$P S_{28}-D$	$P S_{35}-D$	$P S_{60}-D$	$P S_{80}-D$	$P S_{82}-D$	$P S_{91}-D$	$P S_{150-D}$
$20^{\circ} \mathrm{C}$	0.65236	0.69025	0.73786	0.76657	0.80411	0.87558	0.90369	0.90581	0.91433	0.94622
$40{ }^{\circ} \mathrm{C}$	0.653	0.69085	0.73841	0.76708	0.80456	0.87588	0.90393	0.90606	0.91455	0.94636
$60^{\circ} \mathrm{C}$	0.65367	0.69149	0.73898	0.76761	0.80502	0.87621	0.90419	0.90631	0.91478	0.94651
$80^{\circ} \mathrm{C}$	0.65442	0.69219	0.73962	0.7682	0.80554	0.87656	0.90448	0.90659	0.91504	0.94668
$100{ }^{\circ} \mathrm{C}$	0.65523	0.69295	0.74031	0.76883	0.8061	0.87695	0.90478	0.90689	0.91532	0.94686
$140{ }^{\circ} \mathrm{C}$	0.65703	0.69464	0.74184	0.77024	0.80734	0.87781	0.90547	0.90756	0.91593	0.94726
$180^{\circ} \mathrm{C}$	0.65909	0.69658	0.74359	0.77186	0.80876	0.87879	0.90625	0.90833	0.91664	0.94771

