Electronic Supplementary Information

Dye Exchange in Micellar Solutions. Quantitative Analysis of Bulk and Single Molecule Fluorescence Titrations.

Lucas Piñeiro, Sonia Freire, Jorge Bordello, Mercedes Novo, and Wajih Al-Soufi
Department of Physical Chemistry, Faculty of Science,
University of Santiago de Compostela, E-27002 Lugo, Spain.
e-mail: wajih.al-soufi@usc.es . Tel.: + (34) 982824114 Fax: + (34) 982824001

Contents

R123 in TX100 micelles.. 2
C460 in TX100 micelles... 3
C152 in TX100 micelles... 3
Comparison of several dyes in exchange with TX-100.. 4
Fluorescence Correlation Spectroscopy data of R123 and C152 .. 4
Experimental Section ... 5
FCS Measurements... 5
References... 5
Fitting functions ... 6
Concentration Model ... 6
APNModel_S1 .. 6
Derived Properties ... 7
APNModel_DyeExchangeFluorFull.. 7
APNModeI_DyeExchangeFluorShort... 7
APNModel_AbsorptionBandRatio... 8
APNModel_DyeExchangeFCS_tauDMean.. 9
Other models used before: ... 9
APNModel_Conductivity .. 9
APNModel_Conductivity_k1 ... 10
APNModel_Conductivity_k2 .. 10
APNModel_MolarConductivity ... 10
APNModel_SelfDiffusion.. 11
APNModel_NMRChemicalShifts ... 11
APNModel_SurfaceTensionSzyszkowski ... 12
Utility functions .. 13
APNModel_d2S1 ... 13
APNModel_d2S1 .. 13

References to figures and equations refer to the main paper.

Additional Data

Direct TX100 UV-Absorption

Figure SI1: Corrected absorption spectra of TX100 normalized at the maximum with concentrations between 0 and 1 mM . Dashed lines indicate the wavelength used for the ratiometric analysis.

R123 in TX100 micelles

Figure SI2: Fluorescence of R123 in aqueous TX-100 solutions with [TX-100] $=0-26 \mathrm{mM}$. Grey curves and upper wavelength scale: fluorescence spectra. Filled symbols and lower concentration scale: Fluorescence intensities at three wavelength vs. TX-100 concentration. Continuous curves: global fit of equations (4-7, 16) at three wavelengths with $c m c=0.24 \pm 0.01 \mathrm{mM}, r=0.1 \pm 0.1, K=(65.5 \pm 1) 10^{3} \mathrm{M}^{-1}$ and a ratio $F_{b} / F_{f}=0.25$ at 525 nm ($\lambda_{\text {exc }}=488 \mathrm{~nm},[R 123]_{0}=210^{-8} \mathrm{M}$).

C460 in TX100 micelles

Figure SI3: Fluorescence of C460 in aqueous TX-100 solutions with [TX-100] $=0-2 \mathrm{mM}$. Grey curves and upper wavelength scale: fluorescence spectra and pure emission spectra of free C460 (short dash) and bound C460 (dash). Filled symbols and lower concentration scale: Fluorescence intensities at three wavelength vs. TX-100 concentration. Continuous curves: global fit of equations (4-7, 16) at three wavelengths with $\mathrm{cmc}=0.25 \pm 0.01$ $\mathrm{mM}, r=0.1(\mathrm{fix}), K=(82 \pm 5) 10^{3} \mathrm{M}^{-1}$ and a ratio $F_{b} / F_{f}=12$ at $450 \mathrm{~nm}\left(\lambda_{\text {exc }}=380 \mathrm{~nm},[\mathrm{C} 460]_{0}=310^{-7} \mathrm{M}\right)$.

C152 in TX100 micelles

Figure SI4: Fluorescence of C152 in aqueous TX-100 solutions with [TX-100]=0-10 mM. Grey curves and upper wavelength scale: fluorescence spectra. Black squares and lower concentration scale: Fluorescence intensities at 510 nm vs. TX-100 concentration. Solid grey curve: fit of eqs. $(4-7,16)$ with $c m c=0.22 \pm 0.02 \mathrm{mM}$, $r=0.18 \pm 0.13, K=(170 \pm 10) 10^{3} \mathrm{M}^{-1}$ at $510 \mathrm{~nm} .\left(\lambda_{\text {exc }}=380 \mathrm{~nm},[\mathrm{C} 152]_{0}<510^{-7} \mathrm{M}\right)$

Comparison of several dyes in exchange with TX-100

Figure SI5: Normalized fluorescence emission intensity $F_{\text {norm }}=\left(F-F_{f}\right) /\left(F_{b}-F_{f}\right)$ of several dyes in aqueous solutions of TX-100 as function of surfactant concentration. Continuous curves are results of a global fit of equations $(4-7,16)$ with fixed values of $c m c=0.27 \mathrm{mM}$ and $r=0.15$. The excitation and emission wavelength and the ratios F_{b} / F_{f} are given in Table 1.

Fluorescence Correlation Spectroscopy data of R123 and C152

Figure SI6: Mean diffusion times $\bar{\tau}$ (filled symbols) and fluorescence counts per second and molecule (cpm, open circles) from FCS titrations of R123 (circles) and C152 (squares) in TX100 solutions with [TX100]=0-18mM. Continuous lines are fits of eq. (23) to $\bar{\tau}$ and (16) to cpm, both with eqs. (4-7) for the micelle concentration. The fit parameters are given in Table 2 and in the text.

Experimental Section

FCS Measurements

The confocal epi-illuminated setup used for the FCS measurements is home-built ${ }^{1,2}$ and similar to that described elsewhere., ${ }^{3,4}$ A drop of each sample was deposited on a borosilicate coverslip (Menzel Gläser, NO. 1 DE) or in a well of a glass bottom microplate (Whatman Ltd.). The samples were excited by the continuous linearly polarized light of a laser diode (Becker\&Hickl, BDL-485-SMC (489 nm) or BDL-405-SMC (405 nm), DE) coupled to a monomode optical fiber (Point-Source, kineFLEX-P-1-S-405-0.7, UK). The light output of the fiber was collimated (Schäfter\&Kirchhoff, 60FC-4-6,2-01-DI, DE), spectrally cleaned (Semrock, Brightline HC 482/18 or Maxdiode LD01-405/10, US), redirected by a dichroic mirror (Semrock, Brightline BS R488, US or AHF Analysentechnik, z405 RDC, DE) and focused into the sample by a high aperture microscope objective (Olympus, UPLSAPO $60 \times W / 1.20$, water immersion) mounted in an inverted microscope (Olympus, IX-71). The fluorescence was collected by the same objective and then refocused through the dichroic mirror onto a pinhole (Thorlabs, $\varnothing=100 \mu \mathrm{~m}, \mathrm{US}$) in the image plane. The light passing the pinhole was collimated, then split into two beams by a nonpolarizing beamsplitter cube (Thorlabs, BS016, US) and each beam focused onto avalanche photodiodes (MPD50CTC APD, $\varnothing=50 \mu \mathrm{~m}$, MPD, Italy). Band-pass filters (Semrock, Brightline HC 525/45, US or AHF Analysentechnik, HQ550/100M, Germany) in front of the detectors discriminated fluorescence from scattered laser light. The output signals were processed and stored by TCSPC-modules (SPC 132, Becker \& Hickl GmbH, Berlin, Germany). Correlation curves were calculated with the Single Photon Counting software by Becker \& Hickl GmbH.
Typically 10 million photons were collected for each correlation curve. All measurements were made at stabilized temperature, $25.0 \pm 0.5^{\circ} \mathrm{C}$. The excitation power as measured in the focus of the microscope objective (power meter Thorlabs, PM30-120, US) was typically P=120 $\mu \mathrm{W}$, corresponding to a mean irradiance of $I_{0} / 2=P /\left(\pi \cdot w_{x y}{ }^{2}\right)=9 \mathrm{~kW} \mathrm{~cm}{ }^{-2}$. ${ }^{5}$
The focal area and the detection volume were calibrated at 489 nm with Rhodamine 123 and at 405 nm with C 152 . The diffusion coefficient $D(\mathrm{R} 123,250 \mathrm{C})=(4.6 \pm 0.4) \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ was estimated from PFG-NMR ${ }^{6}$ and dual-focus FCS^{7} data. ${ }^{8}$ The diffusion coefficient $D\left(C 152,25{ }^{\circ} \mathrm{C}\right)=(5.2 \pm 0.6) \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ has been taken from Bordello et. al. ${ }^{1}$ The diffusion coefficients are given for $25^{\circ} \mathrm{C}$.

References

1 J. Bordello, M. Novo and W. Al-Soufi, J. Colloid Interface Sci., 2010, 345, 369376.

2 D. Granadero, J. Bordello, M. J. Pérez-Alvite, M. Novo and W. Al-Soufi, Int. J. Mol. Sci., 2010, 11, 173-188.
3 S. Felekyan, R. Kuhnemuth, V. Kudryavtsev, C. Sandhagen, W. Becker and C. A. M. Seidel, Rev. Sci. Instrum., 2005, 76.
4 W. Al-Soufi, B. Reija, M. Novo, S. Felekyan, R. Kühnemuth and C. A. M. Seidel, J. Am. Chem. Soc., 2005, 127, 8775-8784.

5 C. Eggeling, J. Widengren, R. Rigler and C. A. M. Seidel, Anal. Chem., 1998, 70, 2651-2659.
6 P. O. Gendron, F. Avaltroni and K. J. Wilkinson, J. Fluoresc., 2008, 18, 10931101.

7 C. Muller, A. Loman, V. Pacheco, F. Koberling, D. Willbold and W. Richtering, Europhys. Lett., 2008, 83.
8 P. Kapusta, , Absolute Diffusion Coefficients: Compilation of Reference Data for FCS Calibration, http://www.picoquant.com/technotes/appnote diffusion coefficients.pdf.

Fitting functions

We provide ready to use fitting functions for Origin Data Analysis Software (OriginLab Corporation, Northampton, MA 01060, USA) as compressed zip-archive. Updated versions can be downloaded from the author's webpage.

The functions were tested with Origin 8.5 SR1.
For use in Origin the zip-archive should be decompressed in a temporal directory and the functions should be added from the fitting function organizer to the Origin Fitting functions. (Do not copy them directly to the Origin directory.) We propose to add them to a new category such as "APNModel".

All functions can be used for nonlinear fitting and for calculations in columns or other functions. For calculations the functions should be called as "nlf_FunctionName (parameters)", for example: "nlf_APNModel_S1(cS0, cmc,r)".

The functions also serve as examples for other data analysis packages. Therefore we describe briefly the main code of each of the functions.

For further information see:
Wajih Al-Soufi, Lucas Piñeiro, Mercedes Novo, A model for monomer and micellar concentrations in surfactant solutions: Application to conductivity, NMR, diffusion, and surface tension data, Journal of Colloid and Interface Science, Volume 370, Issue 1, 15 March 2012, Pages 102-110, ISSN 0021-9797, http://dx.doi.org/10.1016/j.jcis.2011.12.037.

Concentration Model

APNModel_S1

Concentration model which is used by all other derived properties.
Takes [S] $]_{0}$ and calculates the monomeric concentration $\left[S_{1}\right.$] as function of the $c m c$ and the relative transition width r.

$$
\begin{gathered}
A=\frac{2}{1+\sqrt{\frac{2}{\pi}} r \mathrm{e}^{-\frac{1}{2 r^{2}}}+\operatorname{erf}\left(\frac{1}{\sqrt{2} r}\right)} \\
{\left[\mathrm{S}_{1}\right]=c m c\left[1-A \frac{1}{2}\left(\sqrt{\frac{2}{\pi}} r \mathrm{e}^{-\frac{\left(s_{0}-1\right)^{2}}{2 r^{2}}}+\left(s_{0}-1\right)\left(\operatorname{erf}\left(\frac{s_{0}-1}{\sqrt{2} r}\right)-1\right)\right]\right.}
\end{gathered}
$$

Function Name = APNModel_S1
Brief Description = APN Model: monomeric surfactant concentration - USC - Al-Soufi 2011
[Independent Variables]
cS0 =
[Dependent Variables]
cS1 =
[Fitting Parameters]
Names = cmc, r
Meanings = cmc, relative transition width
[Formula]
$\mathrm{s} 0=\mathrm{cS0} / \mathrm{cmc}$;
$A=2 /(1+\operatorname{sqrt}(2 / P i) * r * \exp (-1 /(2 * r * r))+\operatorname{erf}(1 / \operatorname{Sqrt}(2) / r))$;
$\mathrm{cS} 1=\mathrm{cmc}^{*}\left(1-(\mathrm{A} / 2) *\left(\operatorname{sqrt}(2 / \mathrm{Pi}) * r^{*} \exp \left(-(\mathrm{s} 0-1)^{\wedge} 2 /(2 * r * r)\right)+(\mathrm{s} 0-1) *(\operatorname{erf}((\mathrm{~s} 0-\right.\right.$
1)/(sqrt(2)*r))-1)));

Derived Properties

APNModel_DyeExchangeFluorFull

Fluorescence emission intensity of a dye in exchange equilibrium between the aqueous and the micellar pseudo-phase in a surfactant solution (Full version).
Takes $[\mathrm{S}]_{0}$ and calculates the fluorescence intensity $F\left(\lambda,[\mathrm{~S}]_{0}\right)$ as function of the parameters cmc , the relative transition width r, the aggregation number n , the partition equilibrium constant K, and the limiting fluorescence intensities of free and bound dye $\left(F_{f}, F_{b}\right)$.

$$
F\left(\lambda,[\mathrm{~S}]_{0}\right)=F_{f}(\lambda) \cdot X_{f}+F_{b}(\lambda) \cdot X_{b}=\frac{F_{f}(\lambda)+F_{b}(\lambda) \cdot K \cdot[\mathrm{M}]}{1+K \cdot[\mathrm{M}]}
$$

This function needs the function APNModel_S1.
This same model can of course also be used for any other property of the form $A\left([\mathrm{~S}]_{0}\right)=A_{f} \cdot X_{f}+A_{b} \cdot X_{b}$, such as the translational diffusion constant D.

The aggregation number n and the partition equilibrium constant K are fully correlated in this fit model ($K \cdot[\mathrm{M}]=K \cdot\left[\mathrm{~S}_{\mathrm{m}}\right] / n$) and can therefore not determined simultaneously. The aggregation number n has to be treated as a constant and fixed during the fit. If n is unknown, then it should be fixed to $\mathrm{n}=1$. In this case the fitted value of K is the ratio K / n.

The parameters $\mathrm{cmc}, \mathrm{K}, \mathrm{Ff}, \mathrm{Fb}$ are actively initialized at the beginning of the fit, assuming that the data are sorted with respect to [S] (ascending or descending).

```
Function Name = APNModel_DyeExchangeFluorFull
Brief Description = APN Model: Dye Exchange - USC - Al-Soufi 2013- V01
[Independent Variables]
cS0 =
[Dependent Variables]
F =
[Fitting Parameters]
Names = cmc,r,n,K,Ff,Fb
Meanings = cmc,relative transition width,aggregation number,K,F free dye,F bound
dye
[Formula]
cS1= nlf_APNModel_S1(cS0,cmc,r);
cSm= cS0 - cS1;
cM=cSm/n;
F= (Ff + Fb*K*cM)/(1+K*cM);
```


APNModel_DyeExchangeFluorShort

Fluorescence emission intensity of a dye in exchange equilibrium between the aqueous and the micellar pseudo-phase in a surfactant solution (Short version).
This fit model is identical to APNModel_DyeExchangeFluorFull, except for the definition of the parameters. The limiting fluorescence intensities of free (F_{f}) and bound dye (F_{b}) are now expressed by the fluorescence intensity ratio $q b f=F_{b} / F_{f}$ and the limiting fluorescence intensities of free (F_{f}). Furthermore, in order to avoid the full correlation between the aggregation number n and the partition equilibrium constant K only the ratio $K n=K / n$ is used as fit parameter.

The model takes $[\mathrm{S}]_{0}$ and calculates the fluorescence intensity $F\left(\lambda,[\mathrm{~S}]_{0}\right)$ as function of the cmc , the relative transition width r, the ratio $K n=K / n$ between the partition equilibrium constant K and the aggregation number n, the limiting fluorescence intensities of free ($F_{f}, F A$) and the fluorescence intensity ratio $q b f=F_{b} / F_{f}$.

$$
F\left(\lambda,[\mathrm{~S}]_{0}\right)=F_{f}(\lambda) \cdot X_{f}+F_{b}(\lambda) \cdot X_{b}=\frac{F_{f}(\lambda)+q b f \cdot F_{f}(\lambda) \cdot K n \cdot\left[\mathrm{~S}_{m}\right]}{1+K n \cdot\left[\mathrm{~S}_{m}\right]}
$$

This function needs the function APNModel_S1.

This same model can of course also be used for any other property of the form $A\left([\mathrm{~S}]_{0}\right)=A_{f} \cdot X_{f}+A_{b} \cdot X_{b}$, such as the translational diffusion constant D.

The parameters $\mathrm{cmc}, \mathrm{Kn}, \mathrm{Ff}, \mathrm{qbf}$ are actively initialized at the beginning of the fit, assuming that the data are sorted with respect to [S] (ascending or descending).

Function Name = APNModel_DyeExchangeFluorShort
Brief Description = APN Model: Dye Exchange - USC - Al-Soufi 2013- V01
[Independent Variables]
cS0 =
[Dependent Variables]
F =
[Fitting Parameters]
Names $=c m c, r, K n, F f, q b f$
Meanings $=$ cmc, relative transition width, K/n, Ffree, Fbound/Ffree
[Formula]
cS1= nlf_APNModel_S1(cS0,cmc, r);
cSm= cS0 - cS1;
$\mathrm{Fb}=\mathrm{Ff}$ *qbf;
$\mathrm{F}=(\mathrm{Ff}+\mathrm{Fb} * \mathrm{Kn} * \mathrm{cSm}) /(1+\mathrm{Kn} * \mathrm{cSm})$;

APNModel_AbsorptionBandRatio

Ratio of the direct absorption at two wavelengths λ_{a} and λ_{b} of a surfactant as function of the surfactant concentration.

Takes $[S]_{0}$ and calculates the ratio of the absorptions at two wavelengths λ_{a} and λ_{b} as function of the parameters $c m c$, the relative transition width r, and the molar absorptivity ratios q_{1}, q_{m}, and q_{a}.

$$
q\left(\lambda,\left[\mathrm{~S}_{0}\right)=\frac{A\left(\lambda_{b}\right)}{A\left(\lambda_{a}\right)}=\frac{\left[\mathrm{S}_{1}\right] \cdot q_{1}+\left[\mathrm{S}_{\mathrm{m}}\right] \cdot q_{m} \cdot q_{a}}{\left[\mathrm{~S}_{1}\right]+\left[\mathrm{S}_{\mathrm{m}}\right] \cdot q_{a}}\right.
$$

with the molar absorptivity ratios:

$$
q_{1}=\frac{\varepsilon_{1}\left(\lambda_{b}\right)}{\varepsilon_{1}\left(\lambda_{a}\right)}, q_{m}=\frac{\varepsilon_{m}\left(\lambda_{b}\right)}{\varepsilon_{m}\left(\lambda_{a}\right)}, q_{a}=\frac{\varepsilon_{m}\left(\lambda_{a}\right)}{\varepsilon_{1}\left(\lambda_{a}\right)}
$$

This function needs the function APNModel_S1.
The value of $q\left(\lambda,[\mathrm{~S}]_{0}=0\right)=q_{1}$ is treated separately.

```
Function Name = APNModel_AbsorptionBandRatio
Brief Description = APN Model: Absorption Band Ratio - USC - Al-Soufi 2013- V01
[Independent Variables]
cS0 =
[Dependent Variables]
q =
[Fitting Parameters]
Names = cmc,r,q1,qm,qa
Meanings = cmc,relative transition width,ratio momomers,ratio micellized,ratio
first band
[Formula]
cS1= nlf_APNModel_S1(cS0,cmc,r);
cSm= cS0 - cS1;
q= ( cS0>0 ? (cS1*q1+cSm*qm*qa)/(cS1 + cSm*qa) : q1);
```

Mean diffusion time $\bar{\tau}_{\mathrm{D}}$ of a dye in fast exchange equilibrium between the aqueous and the micellar pseudo-phase in a surfactant solution.

The model takes $[\mathrm{S}]_{0}$ and calculates the mean diffusion time $\bar{\tau}_{\mathrm{D}}$ as function of the cmc , the relative transition width r, the ratio $K n=K / n$, and the diffusion times of free ($\tau_{D, f}$) and bound dye ($\tau_{D, b}$):

$$
\bar{\tau}_{\mathrm{D}}=\frac{w_{\mathrm{xy}}^{2}}{4 \bar{D}}=\frac{\tau_{D, f}(1+K \cdot[\mathrm{M}])}{1+\frac{\tau_{D, f}}{\tau_{D, b}} K \cdot[\mathrm{M}]}=\frac{\tau_{D, f}\left(1+K n \cdot\left[\mathrm{~S}_{\mathrm{m}}\right]\right)}{1+\frac{\tau_{D, f}}{\tau_{D, b}} K n \cdot\left[\mathrm{~S}_{m}\right]}
$$

In order to avoid the full correlation between the aggregation number n and the partition equilibrium constant K only the ratio $K n=K / n$ is used as fit parameter.

This function needs the function APNModel_S1.

```
Function Name = APNModel_DyeExchangeFCS_tauDMean
Brief Description = APN Model: Dye Exchange - USC - Al-Soufi 2013- V01
[Independent Variables]
cS0 =
[Dependent Variables]
tD =
[Fitting Parameters]
Names = cmc,r,Kn,tDf,tDb
Meanings = cmc,relative transition width,K/n,tauD free dye,tauD bound dye
[Formula]
cS1= nlf_APNModel_S1(cS0,cmc,r);
cSm= cS0 - cS1;
tD = tDf*(1+Kn*cSm)/(1 + (tDf/tDb) * Kn*cSm);
```


Other models used before:

APNModel_Conductivity

Conductivity of a surfactant solution.

Takes [S] ${ }_{0}$ and calculates the conductivity κ as function of the cmc , the relative transition width r and the slopes a and b, and the solvent conductivity $c=\kappa_{s}$.

$$
\kappa=a\left[\mathrm{~S}_{1}\right]+b^{\prime}\left[\mathrm{S}_{m}\right] / n+c=a\left[\mathrm{~S}_{1}\right]+b\left[\mathrm{~S}_{m}\right]+c
$$

This function needs the function APNModel_S1.
The parameters $\mathrm{cmc}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ are actively initialized at the beginning of the fit, assuming that the data are sorted with respect to $[\mathrm{S}]_{0}$ (ascending or descending).

```
Function Name = APNModel_Conductivity
Brief Description = APN Model: Electric conductivity - USC - Al-Soufi 2011
[Independent Variables]
cS0 =
[Dependent Variables]
k =
[Fitting Parameters]
Names = cmc,r,a,b,c
Meanings = cmc,relative transition width,a,b,c
[Formula]
cS1= nlf_APNModel_S1(cS0,cmc,r);
cSm= cS0 - cS1;
k=a* cS1 +b * cSm + c;
```


Conductivity of a surfactant solution. Limiting Straight Line 1, below the cmc.

Utility Function: Takes $[\mathrm{S}]_{0}$ and calculates the limiting straight line κ_{1}, below the cmc of the plot of the conductivity $\kappa \mathrm{vs}$. $[\mathrm{S}]_{0}$ with the parameters $\mathrm{cmc}, \mathrm{r}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ determined with APNModel_Conductivity.

$$
\kappa_{1}=a[\mathrm{~S}]_{0}+c
$$

The parameters $\mathrm{cmc}, \mathrm{ry} \mathrm{b}$ are not needed, but included for consistency.

```
Function Name = APNModel_Conductivity_k1
Brief Description = APN Model: Electric conductivity Line 1- USC - Al-Soufi 2011
[Independent Variables]
cS0 =
[Dependent Variables]
k1 =
[Fitting Parameters]
Names = cmc,r,a,b,c
Meanings = cmc,relative curvature,a,b,c
[Formula]
k1 = a* cS0 + c;
```


APNModel_Conductivity_k2

Conductivity of a surfactant solution. Limiting Straight Line 1, below the cmc.

Utility Function: Takes $[\mathrm{S}]_{0}$ and calculates the limiting straight line κ_{2}, above the cmc of the plot of the conductivity k vs. [S] ${ }_{0}$ with the parameters $\mathrm{cmc}, \mathrm{r}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ determined with APNModel_Conductivity.

$$
\kappa_{2}=a \cdot c m c+b \cdot\left([\mathrm{~S}]_{0}-c m c\right)+c
$$

The parameter r is not needed, but included for consistency.

```
Function Name = APNModel_Conductivity_k2
Brief Description = APN Model: Electric conductivity Line 2- USC - Al-Soufi 2011
[Independent Variables]
cS0 =
[Dependent Variables]
k2 =
[Fitting Parameters]
Names = cmc,r,a,b,c
Meanings = cmc,relative curvature,a,b,c
[Formula]
k2=a* cmc b*(cS0-cmc)+ c;
```


APNModel_MolarConductivity

Molar conductivity of a surfactant solution.

Takes $[S]_{0}$ and calculates the molar conductivity (equivalent conductance) as function of the cmc , the relative transition width r and the slopes a and b.

$$
\Lambda_{m}=a\left[\mathrm{~S}_{1}\right] /[\mathrm{S}]_{0}+b\left[\mathrm{~S}_{m}\right] /[\mathrm{S}]_{0}
$$

This function needs the function APNModel_S1.

```
Function Name = APNModel_MolarConductivity
Brief Description = APN Model: Electric molar conductivity - USC - Al-Soufi 2011
[Independent Variables]
cS0 =
[Dependent Variables]
k =
[Fitting Parameters]
Names = cmc,r,a,b
Meanings = cmc,relative transition width, a,b
[Formula]
```


APNModel_SelfDiffusion

Self-diffusion coefficient of a surfactant solution.

Takes $[S]_{0}$ and calculates the self-diffusion coefficient $D_{\text {obs }}$ as function of the $c m c$, the relative transition width r and the self-diffusion coefficients of monomeric $\left(D_{1}\right)$ and micellized $\left(D_{m}\right)$ surfactants.

$$
D_{\text {obs }}=D_{1} \cdot \frac{\left[\mathrm{~S}_{1}\right]}{[\mathrm{S}]_{0}}+D_{m} \cdot \frac{\left[\mathrm{~S}_{m}\right]}{[\mathrm{S}]_{0}}
$$

This function needs the function APNModel_S1.

```
Function Name = APNModel_SelfDiffusion
Brief Description = APN Model: Self Diffusion Coefficients - USC - Al-Soufi 2011
[Independent Variables]
cS0 =
[Dependent Variables]
Dobs =
[Fitting Parameters]
Names = cmc,r,D1,Dm
Meanings = cmc,relative transition width,D1,Dm
[Formula]
cS1= nlf_APNModel_S1(cS0,cmc,r);
cSm= cS0 - cS1;
Dobs = (D1* cS1+Dm *cSm)/cS0;
```


APNModel_NMRChemicalShifts

NMR Chemical Shifts of a surfactant solution.

Takes $[\mathrm{S}]_{0}$ and calculates the NMR Chemical Shifts as function of the cmc , the relative transition width r and the chemical shifts of monomeric $\left(\mathrm{d}_{1}\right)$ and micellized $\left(\mathrm{d}_{\mathrm{m}}\right)$ surfactants.

$$
\delta_{\text {obs }}=\delta_{1} \cdot \frac{\left[\mathrm{~S}_{1}\right]}{[\mathrm{S}]_{0}}+\delta_{m} \cdot \frac{\left[\mathrm{~S}_{m}\right]}{[\mathrm{S}]_{0}}
$$

This function needs the function APNModel_S1.

```
Function Name = APNModel_NMRChemicalShifts
Brief Description = APN Model: NMR Chemical Shifts - USC - Al-Soufi 2011
[Independent Variables]
cS0 =
[Dependent Variables]
Dobs =
[Fitting Parameters]
Names = cmc,r,d1,dm
Meanings = cmc,relative transition width,d1,dm
[Formula]
cS1= nlf_APNModel_S1(cS0,cmc,r);
cSm= cS0 - cS1;
dobs = (d1* cS1+dm *cSm)/(cS1+cSm);
```


APNModel_SurfaceTensionSzyszkowski

Surface Tension (Szyszkowski Equation) of a surfactant solution.

Takes $[\mathrm{S}]_{0}$ and calculates the Surface Tension $\gamma(\mathrm{g})$ using the Szyszkowski Equation as function of the $c m c$, the relative transition width r, the adsorption equilibrium constant $K_{a d}$, the surface tension of the solvent $\gamma_{0}(g 0)$, and the constant $a=R \cdot T / \omega$, being ω the cross sectional area of the surfactant molecule at the surface per mol.

$$
\gamma=\gamma_{0}-a \ln \left(1+K_{a d} \cdot\left[\mathrm{~S}_{1}\right]\right)
$$

This function needs the function APNModel_S1.

```
Function Name = APNModel_SurfaceTensionSzyszkowski
Brief Description = APN Model: Surface Tension (Szyszkowski Equation) - USC - Al-
Soufi 2011
[Independent Variables]
cS0 =
[Dependent Variables]
g =
[Fitting Parameters]
Names = cmc,r,a,Kad,g0
Meanings = cmc,relative transition width,(R T)/omega,adsorption equlibrium
constant,g0
[Formula]
cS1= nlf_APNModel_S1(cS0,cmc,r);
g=g0 - a* ln(1+ Kad*cS1);
```


Utility functions

APNModel

d2S1

First derivative of the monomeric surfactant concentration (equation (10)).
Takes $[\mathrm{S}]_{0}$ and calculates the first derivative [$\left.\mathrm{S}_{1}\right]^{\prime}$ (gradient) of the monomeric concentration $\left[\mathrm{S}_{1}\right.$] as function of the $c m c$ and the relative transition width r.

$$
A=\frac{2}{1+\sqrt{\frac{2}{\pi}} r \mathrm{e}^{-\frac{1}{2 r^{2}}}+\operatorname{erf}\left(\frac{1}{\sqrt{2} r}\right)}
$$

$$
\left[\mathrm{S}_{1}\right]^{\prime}=\frac{d\left[\mathrm{~S}_{1}\right]}{d[\mathrm{~S}]_{0}}=\frac{A}{2}\left(1-\operatorname{erf}\left(\frac{s_{0}-1}{\sqrt{2} r}\right)\right)
$$

Function Name = APNModel_d2S1
Brief Description = APN Model: first derivative of monomeric surfactant concentration - USC - Al-Soufi 2011
[Independent Variables]
cs0 =
[Dependent Variables]
d1S1 =
[Fitting Parameters]
Names = cmc, r
Meanings = cmc, relative transition width
[Formula]
s0 = cS0/cmc;
$\mathrm{A}=2 /\left(1+\mathrm{sqrt}(2 / \mathrm{Pi}) * r^{*} \exp \left(-1 /\left(2^{*} r^{*} r\right)\right)+e r f(1 / \operatorname{Sqrt}(2) / r)\right)$;
d1S1 $=(A / 2) *(1-e r f((s \theta-1) /(S q r t(2) * r)))$;

APNModel_d2S1

Second derivative of the monomeric surfactant concentration (equation (7)).
Takes $[\mathrm{S}]_{0}$ and calculates the second derivative $\left[\mathrm{S}_{1}\right]^{\prime \prime}$ (curvature) of the monomeric concentration $\left[\mathrm{S}_{1}\right]$ as function of the $c m c$ and the relative transition width r.

$$
A=\frac{2}{1+\sqrt{\frac{2}{\pi}} r \mathrm{e}^{-\frac{1}{2 r^{2}}}+\operatorname{erf}\left(\frac{1}{\sqrt{2} r}\right)} \quad\left[\mathrm{S}_{1}\right]^{\prime \prime}=\frac{d^{2}\left[\mathrm{~S}_{1}\right]}{d s_{0}^{2}}=-\frac{A}{c m c} \frac{1}{\sqrt{2 \pi} r} \mathrm{e}^{-\frac{\left(s_{0}-1\right)^{2}}{2 r^{2}}}
$$

Function Name = APNModel_d2S1
Brief Description = APN Model: second derivative of monomeric surfactant concentration - USC - Al-Soufi 2011
[Independent Variables]
cS0 =
[Dependent Variables]
d2S1 =
[Fitting Parameters]
Names = cmc, r
Meanings = cmc, relative transition width
[Formula]
$\mathrm{s} 0=\mathrm{cSo} / \mathrm{cmc}$;
$\mathrm{A}=2 /(1+\mathrm{sqrt}(2 / \mathrm{Pi}) * r * \exp (-1 /(2 * r * r))+e r f(1 / \operatorname{Sqrt}(2) / r))$;
d2S1=-(A/(cmc*sqrt(2*Pi)*r))*exp(-(s0-1)^2/(2*r*r));

