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1 Videos

1.1 Video One: Rotating Spiral Coil

This video shows a self-organized spiral coil rotating at ∼ 12 rad/s. The size of view is 44×44
µm2, and the video is displayed at real time 50 frames per second (fps) for two seconds.

1.2 Video Two: Spiral Coil Folding

This video shows a folding process of a single spiral coil. The size of view is 26×26 µm2, and
the video is displayed at real time 50 fps for 2.2 seconds. The long cells turned into itself and
then folded in 2D.

1.3 Video Three: Spiral Coil Unfolding

This video shows an unfolding process of a double spiral coil. The size of view is 46×52 µm2,
and the video is displayed at real time 50 fps for 6.4 seconds. One end of the cell changed the
moving direction that unfolded the whole coil.

1.4 Video Four: Simulating Rotating Spiral Coil

This video shows a simulated self-organized spiral coil rotating at ∼ 6 rad/s. The size of view
is 60×60 µm2, and the video is displayed at real time 50 fps for 2 seconds.

2 Brownian Dynamics Simulations

As outlined in the main text, the dynamics of the long and short bacteria is simulated through
the quasi-two-dimensional Brownian dynamics simulation. Both types of bacteria are composed
of identical beads (diameter σ = 1 µm). The short bacterium has Nr beads, and the long one
has Ns. Each bead obeys the overdamped Langevin equation as follows:

ξ
d~Rn(t)

dt
= −∇U({~Rn}) + ~f (n)p (t) + ~f (n)(t), n = 1, · · · , N, (1)

where ξ is the friction constant, ~Rn the position of the n-th bead, U({~Rn}) = UW (r) +UF (r) +

Ub(θ) the interaction potential between beads, ~f
(n)
p the propulsion force, ~f (n) the random

force acting on the n-th bead, and N the total number of beads. The random force ~f (n) is
characterized by a Gaussian probability distribution, as usual, with the correlation function

〈f (m)
i (t)f

(n)
j (t′)〉 = 2ξkBTδmnδijδ(t− t′).
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As shown above, there are three kinds of interactions between beads in the simulation. The
first type is the excluded volume interaction that is modeled by using the Weeks-Chandler-
Andersen potential (WCA),

UW (r) =

{
4ε
[(

σ
r

)12 − (σr )6]+ ε r < 21/6σ

0 r ≥ 21/6σ,
(2)

where r is the separation between the centers of mass of two beads. Since this is a short ranged
interaction, in practice we can ignore any beads farther than the cut-off distance 21/6σ. In the
simulation, the well depth ε is set as the thermal energy kBT , and the program ignores any
beads outside of a 3σ × 3σ area while calculating the excluded volume interaction to save the
computation time.

The second kind of interactions is the bonding between beads within either long or short
bacteria. Here we apply the finitely extensible nonlinear elastic potential (FENE) to confine the
distance between connected beads. With careful choices of k and R0 and the WCA potential,
the chains cannot move through one another. In the simulation the FENE potential is given as
follows:

UF (r) =

{
−1

2kR
2
0 log[1− (r/R0)

2] r < R0

∞ r ≥ R0,
(3)

where k = 60kBT/σ
2 and R0 = 1.25σ. The choice of these values are simply based on matching

the separation between consecutive beads to the set diameter σ = 1 µm and the stability of the
bonding under the circumstances of frequent collisions from other cells.

The last kind of interactions is the elastic bending between bonds. We calculate the position
vectors of consecutive beads ~Ra = ~Ri− ~Ri−1 and ~Rb = ~Ri+1− ~Ri, for 1 < i < Nr or 1 < i < Ns,
and the angle between ~Ra and ~Rb via θb = cos−1(~Ra · ~Rb/|~Ra||~Rb|). The elastic bending energy
is simply given by

Ub =
1

2
klθ

2
b , (4)

where kl = 60σkBT in the simulation. The choice of this value is based on matching the curva-
ture of the long bacterium in the simulation compared to that observed in experiments. Without
interactions with other short bacteria, the long bacterium maintains a straight conformation
for most of times due to the long persistence length.

In order to model the change of propelling direction of flagella on the bacteria, we propose a
simple way to model the propulsion generated by the flagella. First we assume that each bead

is propelled by a constant propulsion force |~f (n)p | = 0.2 pN. Despite the magnitude is fixed, the
direction of the propulsion can be changed according to the current speed of the bead. We
first compute the tangential direction by simply using the position vectors between consecutive
beads. Then we add an angle deviation ∆θp,

∆θp =
2π

1 + Co|~v|
X, ∀ X ∈ R : −1

2
< X <

1

2
, (5)

where X is a uniformly distributed random variable, to the tangential direction. Here the
coefficient Co controls how large the deviation can be according to the current speed |~v|. In this
way, even when a bacterium is blocked by other bacteria, it still has ways to turn and escape
from the obstacles. On the other hand, when it is relatively free to move, the propulsion tends
to align along the long axis of the bacterium. In this work, Co is set to be 103 to imitate the
average speed of the bacteria observed in experiments.
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A typical simulation comprised N = 2208 beads, including Ns = 48 for the long bacterium
and others for the short ones (Nr = 4). There were 540 short bacteria and a long one in the
60 × 60 µm2 area, in which periodic boundary conditions were implemented at the edges of
the square area. In order to investigate the effects of the contour length of the long cell, we
also reduced Ns to smaller values (Ns = 4, 8, 12, 16, 20, 24, and 36) in some simulation runs and
made the reduced part become short cells; namely, the total number of beads were retained
throughout the whole study. The simulation was typically run with the temperature at 25◦C,
the viscosity of water η = 8.9× 10−4 Pa·s and the friction constant ξ = 3πησ. Each time step
of the simulation was 50 µs, and the infinitesimal length interval for spatial derivatives was set
to 10−4σ.

3 The Elastic Restoring Force of a Spiral Coil

In what follows we explain the calculation of elastic restoring force of a spiral coil. Here we only
take the Single Clockwise (SCW) spiral as the example. The calculation of other three types of
spiral coils shall be similar to this case, although it may be tricky for the cases of “S-centered”
double spirals. The SCW spiral coil can be mathematically represented as an Archimedes’ spiral
in the polar coordinates,

r =
b

2π
θ, (6)

where b is the width of the bacterium and θ ∈ (2π, 2(n + 1)π], n being the number of rounds.
Note that the curve does not begin at the origin. This is because the bacterium has finite
volume and stiffness, and it is difficult to accommodate itself in that region, θ ∈ [0, 2π], due to
either the high cost of bending energy or the excluded volume interaction. In the experimental
observation, we always can see an empty hole or space at the center of spiral coils. Therefore,
around the center of the Archimedes’ spiral it does not represent the geometry of the spiral coils
in our experiments.

Because of the stiffness of the bacterial cell wall, there is energy cost to bend the bacterium.
Here the bending energy per unit arc length is thought of as proportional to the quadratic of
the curvature

δUb =
1

2
Eκ2, (7)

where κ is the curvature of the Archimedes’ spiral,

κ =
2π(θ2 + 2)

b(θ2 + 1)3/2
. (8)

The constant E is related to the persistence length of the cell lp and the thermal energy kBT ,
according to the worm-like chain model,

l−1p =
kBT

E
. (9)

In order to compute the elastic restoring force along the spiral coil, one needs to know how to
calculate the arc length first. The unit arc length of the Archimedes’ spiral can be written as

ds =
b

2π

√
θ2 + 1dθ. (10)
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The elastic restoring force per unit arc length now can be obtained by differentiating the bending
energy density δUb with respect to the arc length s,

δfb = −1

2
E
∂κ2

∂s

= −1

2
E
∂

∂θ

(
dθ

ds

)[
2π(θ2 + 2)

b(θ2 + 1)3/2

]2
=

4π3lpkBT

b3

[
θ(θ2 + 2)(3θ2 + 10)

(θ2 + 1)9/2

]
. (11)

When one puts the values used in the simulation, b = 1 µm, lp = 60 µm, and kBT ≈ 4.12×10−3

pN-µm, into the result above, the restoring force per unit arc length is monotonically decreasing
with the increasing θ in the range θ ∈ (2π, 2(n+1)π], and its maximum at θ = 2π is of the order
10−2 pN/µm. For comparison, the propulsion force in the simulation is 0.2 pN per bead. The
result of decreasing restoring force per unit arc length is consistent with the direct observation.
When one follows the contour of the spiral coil from the center moving toward the outer rim, the
degree of bending (i.e. the curvature) is decreasing, thus the elastic restoring force is reducing.
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